p53 is widely known as 'the guardian of the genome'due to its ability to activate either cell cycle arrest or apoptosis in response to DNA damage. This project has uncovered a novel role of p53 cell stress responses in enforcing innate immunity by transcriptional upregulation of IRF9, a central component of the type I interferon (IFN) response. Recent evidence from our studies and others indicates that p53 also directly upregulates several target genes in pathways that play a major role in innate immunity including toll-like receptors (TLRs), IFNregulatory factors (IRFs), IFN-stimulated genes (ISGs) and tumor necrosis factor alpha (TNF-a). Within this project, we discovered a novel p53 target gene, CDIP (Cell Death Involved p53 target), which markedly upregulates p53 dependent expression of TNF-a, and promotes TNF-a apoptosis over survival cell fate decisions. We plan to continue our investigations addressing these novel directions in p53 biology.
Aim 1 of this proposal is directed toward investigating the contribution of p53 dependent expression of these newly identified target genes to the innate antiviral immune response including a miRNA component of this response identified by us to play a role as well. We will explore with Projects 2 and 3, our findings that type I IFNs enhance protein levels by a non-transcriptional mechanism as well as the posttranslational modifications involved. We will also determine the ability of MDM2 inhibitors, which increase p53 at the protein level to enhance p53-dependent innate antiviral responses in vitro and in vivo.
In Aim 2 we will investigate mechanisms by which CDIP enforces TNF-a induced apoptosis over survival and its specific role in TNF-a growth inhibition of human tumor cells. We will also utilize a tandem affinity purification strategy to identify CDIP Interacting proteins and collaborate with Project 2 to solve the novel structure of this molecule. We have evidence for feasibility of generating a CDIP knockout mouse that should help to elucidate CDIP tissue expression and any developmental perturbations due to loss of function on development, as well as how loss of CDIP function affects chemo/irradiation and TNF-a sensitivity.
In Aim 3, we plan to integrate these investigations toward elucidating how p53 innate immune functions through cytokine signaling impact tumorigenesis in chemical carcinogenesis models in which endogenous IFNs and TNF-a are known to inhibit tumor formation. MDM2 small molecule antagonists will be applied to dissect p53 tumor suppressor functions in tumor initiation and progression. These investigations will be aided by continuing monthly meetings and collaborative interactions involving experienced investigators within the Program, each of whom is focused on studying novel aspects of p53 regulation and effectors.

Public Health Relevance

The overall relevance of this Project is that it explores previously unrecognized functions of the highly evolutionarily conserved p53 protein in innate immunity. These functions may contribute to its tumor suppressor role by enforcing cytokine signaling known to inhibit tumor progression as well as contribute along with p53 pro-apoptotic signaling to innate antiviral immunity. Studies within this project are also designed to assess whether MDM2 antagonists can be utilized to further target these p53 dependent functions against cancer and viral infection.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA080058-15
Application #
8678849
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
15
Fiscal Year
2014
Total Cost
$459,272
Indirect Cost
$75,039
Name
Icahn School of Medicine at Mount Sinai
Department
Type
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Tavana, Omid; Li, Dawei; Dai, Chao et al. (2016) HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma. Nat Med 22:1180-1186
Ou, Yang; Wang, Shang-Jui; Li, Dawei et al. (2016) Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci U S A 113:E6806-E6812
Li, Tongyuan; Liu, Xiangyu; Jiang, Le et al. (2016) Loss of p53-mediated cell-cycle arrest, senescence and apoptosis promotes genomic instability and premature aging. Oncotarget 7:11838-49
Mungamuri, Sathish Kumar; Qiao, Rui F; Yao, Shen et al. (2016) USP7 Enforces Heterochromatinization of p53 Target Promoters by Protecting SUV39H1 from MDM2-Mediated Degradation. Cell Rep 14:2528-37
Hwang, So-Young; Deng, Xianming; Byun, Sanguine et al. (2016) Direct Targeting of β-Catenin by a Small Molecule Stimulates Proteasomal Degradation and Suppresses Oncogenic Wnt/β-Catenin Signaling. Cell Rep 16:28-36
Shi, D; Dai, C; Qin, J et al. (2016) Negative regulation of the p300-p53 interplay by DDX24. Oncogene 35:528-36
Ou, Yang; Wang, Shang-Jui; Jiang, Le et al. (2015) p53 Protein-mediated regulation of phosphoglycerate dehydrogenase (PHGDH) is crucial for the apoptotic response upon serine starvation. J Biol Chem 290:457-66
Hiraki, Masatsugu; Hwang, So-Young; Cao, Shugeng et al. (2015) Small-Molecule Reactivation of Mutant p53 to Wild-Type-like p53 through the p53-Hsp40 Regulatory Axis. Chem Biol 22:1206-16
Resnick-Silverman, Lois; Manfredi, James J (2015) Two Faces of SIVA. Cancer Discov 5:581-3
Jiang, Le; Kon, Ning; Li, Tongyuan et al. (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:57-62

Showing the most recent 10 out of 76 publications