This research is focused on the molecular mechanisms that govern whether a primary breast cancer will or will not become aggressive, metastatic and thus life threatening. At present, the ability to predict such aggressiveness is imperfect, in that there is great inter-individual variability in the behavior of a group of tumors that are all classified together in one of the major subgroups of breast cancer and thus predicted to share a common prognosis. At present, this inability to generate accurate predictions of the future behavior of individual breast cancers leads to aggressive treatment of the great majority of diagnosed tumors, when only a minority are destined to become life threatening. The research describes three major determinants of malignant progression of breast cancer cells and how they conspire to generate aggressive behavior. These are (i) the ability of carcinoma cells to release pro-inflammatory signals;(ii) the reciprocal responses of nearby mesenchymal stem cells within the stroma of tumors to these carcinoma-derived signals, resulting secondarily in the release of signals that have the potential of inducing carcinoma cells to move from an epithelial(benign) to mesenchymal (malignant) state;and (iii) the propensity of the carcinoma cells to respond to these stroma-derived signals by undergoing this shift in differentiation state, thereby acquiring highly aggressive characteristics. The propensity of cancer cells to move from an epithelial/benign to a mesenchymal/malignant state appears to be governed by the state of the chromatin associated with the gene that encodes ZEB1, which functions as the key molecular governor of the epithelial vs. mesenchymal states. Examining the chromatin configuration of this gene- more specifically the covalent modifications of the histones associated with the promoter of this gene - holds the promise of revealing the proclivity of a breast cancer cell to activate its program of malignant conversion, often termed the epithelial-mesenchymal transition.

Public Health Relevance

This research is focused on the molecular mechanisms that determine whether or not a primary human breast cancer will become aggressive and metastatic, resulting in an ability to predict such future behavior. At present, the inability to predict this behavior results in the vast overtreatment of breast cancer patients, most of whom are treated with aggressive therapies even though the tumors that they bear are not destined to ever become life threatening.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-J (O1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Whitehead Institute for Biomedical Research
United States
Zip Code
Bailey, Shannon T; Westerling, Thomas; Brown, Myles (2015) Loss of estrogen-regulated microRNA expression increases HER2 signaling and is prognostic of poor outcome in luminal breast cancer. Cancer Res 75:436-45
Hines, William C; Su, Ying; Kuhn, Irene et al. (2014) Sorting out the FACS: a devil in the details. Cell Rep 6:779-81
Yamamoto, Shoji; Wu, Zhenhua; Russnes, Hege G et al. (2014) JARID1B is a luminal lineage-driving oncogene in breast cancer. Cancer Cell 25:762-77
Jeselsohn, Rinath; Yelensky, Roman; Buchwalter, Gilles et al. (2014) Emergence of constitutively active estrogen receptor-? mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res 20:1757-67
Lu, Haihui; Clauser, Karl R; Tam, Wai Leong et al. (2014) A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol 16:1105-17
Pathania, Shailja; Bade, Sangeeta; Le Guillou, Morwenna et al. (2014) BRCA1 haploinsufficiency for replication stress suppression in primary cells. Nat Commun 5:5496
Hu, Yiduo; Petit, Sarah A; Ficarro, Scott B et al. (2014) PARP1-driven poly-ADP-ribosylation regulates BRCA1 function in homologous recombination-mediated DNA repair. Cancer Discov 4:1430-47
McAllister, Sandra S; Weinberg, Robert A (2014) The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol 16:717-27
Hill, Sarah J; Rolland, Thomas; Adelmant, Guillaume et al. (2014) Systematic screening reveals a role for BRCA1 in the response to transcription-associated DNA damage. Genes Dev 28:1957-75
Hill, Sarah J; Clark, Allison P; Silver, Daniel P et al. (2014) BRCA1 pathway function in basal-like breast cancer cells. Mol Cell Biol 34:3828-42

Showing the most recent 10 out of 89 publications