While virtually all human tumors are derived from a single cell-of-origin, neoplastic cells within a tumor evolve over time due to genetic and epigenetic alterations, lineage diversification, and influences from stromal cells. These processes generate considerable heterogeneity within populations of neoplastic cells from individual tumors. Despite our knowledge of the existence of tumor cell heterogeneity, it is not understood whether the heterogeneous subpopulations of tumor cells merely co-exist, or alternatively whether they communicate with each other, complementing one another's phenotypes and generating biological outcomes that individual populations are incapable of producing on their own. The lack of understanding of such functional interactions between tum9r populations has been due in large part to the inability to maintain the heterogeneity of human tumors in culture and to propagate distinct clonal subpopulations from individual tumors. We and our collaborators have developed approaches that have overcome these barriers and made it feasible to culture bar-coded, fluorescently-tagged, clonal populations of tumor cells and then track individual clonal populations within tumor xenografts generated from mixtures of transplanted clones. Using these approaches, we have obtained evidence the supports the hypothesis that clonal subpopulations within a tumor cooperate with one another to promote tumor expansion and metastasis. In this proposal, we describe plans to test this hypothesis in human breast tumors by (1) characterizing the extent of genetic and phenotypic variation among clonal populations derived from an individual breast tumor and analyzing the tumor-initiating, invasive, and metastatic activity of each clonal subpopulation, (2) generating a map that plots the localization of clonal populations within tumors and their dynamic evolution over time, (3) investigating the functional consequences of heterogeneity within human breast tumor cell populations, and (4) elucidating the mechanisms responsible for phenotypes generated by intratumoral crosstalk. These studies will provide important insights into the nature of cooperative interactions between tumor cell populations and how these affect tumor expansion, invasion, or metastasis.

Public Health Relevance

The proposed studies on heterogeneity of neoplastic cells from human breast tumors will not only reveal important new information on the functional significance of intratumoral heterogeneity that is critical for understanding the evolution and dynamics of tumor cell development, progression and metastasis, but the findings will also be highly relevant to issues related to diagnosis, treatment efficacy, and identification of drug targets.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-J (O1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Whitehead Institute for Biomedical Research
United States
Zip Code
Bailey, Shannon T; Westerling, Thomas; Brown, Myles (2015) Loss of estrogen-regulated microRNA expression increases HER2 signaling and is prognostic of poor outcome in luminal breast cancer. Cancer Res 75:436-45
Hines, William C; Su, Ying; Kuhn, Irene et al. (2014) Sorting out the FACS: a devil in the details. Cell Rep 6:779-81
Yamamoto, Shoji; Wu, Zhenhua; Russnes, Hege G et al. (2014) JARID1B is a luminal lineage-driving oncogene in breast cancer. Cancer Cell 25:762-77
Jeselsohn, Rinath; Yelensky, Roman; Buchwalter, Gilles et al. (2014) Emergence of constitutively active estrogen receptor-? mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res 20:1757-67
Lu, Haihui; Clauser, Karl R; Tam, Wai Leong et al. (2014) A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol 16:1105-17
Pathania, Shailja; Bade, Sangeeta; Le Guillou, Morwenna et al. (2014) BRCA1 haploinsufficiency for replication stress suppression in primary cells. Nat Commun 5:5496
Hu, Yiduo; Petit, Sarah A; Ficarro, Scott B et al. (2014) PARP1-driven poly-ADP-ribosylation regulates BRCA1 function in homologous recombination-mediated DNA repair. Cancer Discov 4:1430-47
McAllister, Sandra S; Weinberg, Robert A (2014) The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol 16:717-27
Hill, Sarah J; Rolland, Thomas; Adelmant, Guillaume et al. (2014) Systematic screening reveals a role for BRCA1 in the response to transcription-associated DNA damage. Genes Dev 28:1957-75
Hill, Sarah J; Clark, Allison P; Silver, Daniel P et al. (2014) BRCA1 pathway function in basal-like breast cancer cells. Mol Cell Biol 34:3828-42

Showing the most recent 10 out of 89 publications