Glioblastoma (GBM) is the most common and most aggressive brain tumor in humans. Because it is highly angiogenic, the anti-vascular endothelial growth factor (VEGF) antibody bevacizumab has now^ become the standard of care for treatment of recurrent GBM. We have found that vessel normalization and subsequent reduction of brain edema accounts for a major part of anti-VEGF treatment's benefit in GBM. However, this resulting benefit is modest and tumors inevitably progress and may even develop an increased invasive phenotype. To overcome this resistance, we aim to target two pathways that increase during escape from vessel normalization:
ANG2 (Aims 1 &2) and SDFla/CXCR4 (Aim 3). Based on our prelinrdnary data, we hypothesize that anti-ANG2 therapy will increase the efficacy of anti-VEGF therapy by increasing the window of normalization and thereby sustainably decreasing edema (Aim 1). We also hypothesize that anti-VEGF and ANG2 combined therapy will polarize pro-tumor tumor-associated macrophages (TAMs) to anti-tumor TAMs and thus increase tumor response and mouse survival (Aim 2). Lastly, CXCR4-blockade can reduce infiltration and activation of immtmosuppressive (Gr-1+) BMDCs in non-CNS tumors, and preliminary evidence shows that SDFIa can reduce GBM invasion caused by anti-VEGF treatment. Thus, we now propose to use both genetic and pharmacologic approaches to test the role SDFla/CXCR4-blockade in improving the outcome of anti-VEGF therapy (Aim 3). TTie proposed work will reveal the molecular, cellular and physiological mechanisms of action of anti-Ang-2 and anti-SDFla/CXCR4 agents in GBM - alone and with anti-VEGF agents, and inform the planned clinical trials with these agents in GBM patients.

Public Health Relevance

We propose a comprehensive approach to dissect the mechanisms of GBM escape from anti-VEGF therapy. We will examine two distinct pathways of evasion that emerged from our preclinical and clinical studies in GBM. Our research will generate important and translatable results for new combination therapy paradigms that are desperately needed for this dreadful disease.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-O (J1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Padera, Timothy P; Meijer, Eelco F J; Munn, Lance L (2016) The Lymphatic System in Disease Processes and Cancer Progression. Annu Rev Biomed Eng 18:125-58
Datta, Meenal; Via, Laura E; Chen, Wei et al. (2016) Mathematical Model of Oxygen Transport in Tuberculosis Granulomas. Ann Biomed Eng 44:863-72
Kloepper, Jonas; Riedemann, Lars; Amoozgar, Zohreh et al. (2016) Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci U S A 113:4476-81
Chng, Kern Rei; Chan, Sock Hoai; Ng, Amanda Hui Qi et al. (2016) Tissue Microbiome Profiling Identifies an Enrichment of Specific Enteric Bacteria in Opisthorchis viverrini Associated Cholangiocarcinoma. EBioMedicine 8:195-202
Incio, Joao; Liu, Hao; Suboj, Priya et al. (2016) Obesity-Induced Inflammation and Desmoplasia Promote Pancreatic Cancer Progression and Resistance to Chemotherapy. Cancer Discov 6:852-69
Kunert, Christian; Baish, James W; Liao, Shan et al. (2016) Reply to Davis: Nitric oxide regulates lymphatic contractions. Proc Natl Acad Sci U S A 113:E106
Park, Kyung Ran; Monsky, Wayne L; Lee, Chang Geol et al. (2016) Mast Cells Contribute to Radiation-Induced Vascular Hyperpermeability. Radiat Res 185:182-9
Singhal, Prabhat K; Sassi, Slim; Lan, Lan et al. (2016) Mouse embryonic fibroblasts exhibit extensive developmental and phenotypic diversity. Proc Natl Acad Sci U S A 113:122-7
Askoxylakis, Vasileios; Ferraro, Gino B; Kodack, David P et al. (2016) Preclinical Efficacy of Ado-trastuzumab Emtansine in the Brain Microenvironment. J Natl Cancer Inst 108:
Pinter, Matthias; Trauner, Michael; Peck-Radosavljevic, Markus et al. (2016) Cancer and liver cirrhosis: implications on prognosis and management. ESMO Open 1:e000042

Showing the most recent 10 out of 248 publications