The objective of the NANT Pre-Clinical Testing Lab is to facilitate the generation of hypothesis driven clinical trials within the NANT, and to provide guidance to NANT clinical investigators in prioritizing potential new therapeutics for phase I trials, and rational use of combinatorial therapy. The following Specific Aims will aid in achieving our objective: 1) Maintain a master cell bank of well-characterized human neuroblastoma cell lines. 2) Maintain DIMSCAN instrument in working order for use for experiments dealing with chemotherapeutic agents and IL-6, soluble IL-6, anti-IL-6 mAb CNTO 328, the STAT3 inhibitor stattic (Project 1), NK cells, anti-IGF1R mAb (Project 2), PI3K inhibitors, Aurora Kinase A type I and II inhibitors (Project 3), and drugs and drug combinations suggested by NANT investigators (Project 4). 3) Develop a "microenvironment" model by co-culturing tumor cells with representative microenvironment cells (e.g., monocytes, mesenchymal cells) to test by DIMSCAN therapies targeting tumor cell - microenvironment cell interaction (e.g., anti-IL-6 mAb;lenalidomide) (collaboration with Projects 1 and 2). 4) Conduct in vitro cytotoxicity assays using DIMSCAN and provide assistance to project investigators in designing experiments, instructing in use of DIMSCAN and analyzing of data. 5) Assess anti-tumor activity of selected combinations using subcutaneous and disseminated disease xenograft models of multi-drug-resistant human neuroblastomas in immunocompromised mice by 1) determining maximal tolerated dose (MTD) of selected drug combinations;2) assessing pharmacodynamic evidence of drug activity at the MTD in tumor xenograft tissue;3) assessing the effect of the most active combinations on tumor growth delay and mouse survival.

Public Health Relevance

Robust pre-clinical data generated through vigorous in vitro and in vivo testing will facilitate patient accrual to phase I trials, as patients most likely will enter trials with convincing experimental support. In addition, the pre-clinical modeling is crucial in establishing optimal scheduling for combination therapies, and synergistic and additive effects.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA081403-14
Application #
8506990
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
14
Fiscal Year
2013
Total Cost
$210,182
Indirect Cost
$43,132
Name
Children's Hospital of Los Angeles
Department
Type
DUNS #
052277936
City
Los Angeles
State
CA
Country
United States
Zip Code
90027
Johnson, Brett E; Mazor, Tali; Hong, Chibo et al. (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:189-93
Borriello, Lucia; DeClerck, Yves A (2014) [Tumor microenvironment and therapeutic resistance process]. Med Sci (Paris) 30:445-51
Gustafson, William Clay; Meyerowitz, Justin Gabriel; Nekritz, Erin A et al. (2014) Drugging MYCN through an allosteric transition in Aurora kinase A. Cancer Cell 26:414-27
Kang, Min H; Villablanca, Judith G; Glade Bender, Julia L et al. (2014) Probable fatal drug interaction between intravenous fenretinide, ceftriaxone, and acetaminophen: a case report from a New Approaches to Neuroblastoma (NANT) Phase I study. BMC Res Notes 7:256
Solari, Valeria; Borriello, Lucia; Turcatel, Gianluca et al. (2014) MYCN-dependent expression of sulfatase-2 regulates neuroblastoma cell survival. Cancer Res 74:5999-6009
Sos, Martin L; Levin, Rebecca S; Gordan, John D et al. (2014) Oncogene mimicry as a mechanism of primary resistance to BRAF inhibitors. Cell Rep 8:1037-48
Marshall, Glenn M; Carter, Daniel R; Cheung, Belamy B et al. (2014) The prenatal origins of cancer. Nat Rev Cancer 14:277-89
Ilkanizadeh, Shirin; Lau, Jasmine; Huang, Miller et al. (2014) Glial progenitors as targets for transformation in glioma. Adv Cancer Res 121:1-65
Bergfeld, Scott A; Blavier, Laurence; DeClerck, Yves A (2014) Bone marrow-derived mesenchymal stromal cells promote survival and drug resistance in tumor cells. Mol Cancer Ther 13:962-75
Chen, Justin; Weiss, William A (2014) When deletions gain functions: commandeering epigenetic mechanisms. Cancer Cell 26:160-1

Showing the most recent 10 out of 106 publications