The CLL Research Consortium (CRC) is multi-institutional research program with a mission to develop improved and potentially curative treatments for patients with chronic lymphocytic leukemia (CLL). The CRC provides an infrastructure that facilitates research on novel therapies and on clinical-laboratory relationships that improve clinical staging and/or assist in the early assessment of response to therapy. The CRC has six projects. Proj, 1 (Croce) investigates the genetic basis for CLL and examines the expression and function of non-coding RNA found to influence pathogenesis and disease progression. Proj, 2 (Reed) examines novel chemical antagonists that target proteins that inhibit apoptosis. Proj, 3 (Kipps) examines strategies for active immune therapy, factors involved in the cross talk in the CLL-cell microenvironment, and novel approaches to target R0R1, a leukemia-associated antigen. Proj. 4 (Gribben) evaluates T cell defects that impair cognate intercellular interactions and/or development of effective anti-tumor immunity and investigates strategies for allogeneic stem cell transplantation. Proj. 5 (Plunkett) examines the activity of promising anticancer agents alone or in mechanism-based combinations. Proj. 6 (Grever) studies inhibitors of key metabolic pathways implicated in pathogenesis and/or disease progression. The CRC has 4 cores: Core A (Kipps) provides scientific and administrative oversight, organizes meetings, facilitates communication, monitors for compliance with regulatory agencies, and provides biomedical informatics and data management. Core B (Neuberg) assists in the design, implementation, and data analyses of basic and clinical research projects. Core C (Rassenti) provides for tissue banking, sample trafficking, and sample validation. It ensures uniform analyses of genetic and phenotypic features of stored samples, processes samples from patients treated on CRC clinical studies, and ensures appropriate access to samples for correlative science studies and hypothesis-testing research. Core D (Wierda) facilitates development and execution of clinical trials, identifies new strategies for treatment, facilitates correlative laboratory studies, and assesses laboratory and clinical parameters collected on patients participating in CRC clinical studies.

Public Health Relevance

This program is studying chronic lymphocytic leukemia (CLL), the most common adult leukemia in the U.S. Research projects on genetics and biology of CLL are integrated in an infrastructure that facilitates discovery and initial validation of novel approaches to treat patients with this incurable disease. Success in these efforts is anticipated to have major implications to our understanding and treatment of cancer in general.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-0 (O1))
Program Officer
Merritt, William D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Internal Medicine/Medicine
Schools of Medicine
La Jolla
United States
Zip Code
Hasan, M K; Yu, J; Chen, L et al. (2017) Wnt5a induces ROR1 to complex with HS1 to enhance migration of chronic lymphocytic leukemia cells. Leukemia 31:2615-2622
Patel, V M; Balakrishnan, K; Douglas, M et al. (2017) Duvelisib treatment is associated with altered expression of apoptotic regulators that helps in sensitization of chronic lymphocytic leukemia cells to venetoclax (ABT-199). Leukemia 31:1872-1881
Patel, Viralkumar; Balakrishnan, Kumudha; Bibikova, Elena et al. (2017) Comparison of Acalabrutinib, A Selective Bruton Tyrosine Kinase Inhibitor, with Ibrutinib in Chronic Lymphocytic Leukemia Cells. Clin Cancer Res 23:3734-3743
Edelmann, J; Tausch, E; Landau, D A et al. (2017) Frequent evolution of copy number alterations in CLL following first-line treatment with FC(R) is enriched with TP53 alterations: results from the CLL8 trial. Leukemia 31:734-738
Miller, Cecelia R; Ruppert, Amy S; Fobare, Sydney et al. (2017) The long noncoding RNA, treRNA, decreases DNA damage and is associated with poor response to chemotherapy in chronic lymphocytic leukemia. Oncotarget 8:25942-25954
Vangapandu, Hima V; Jain, Nitin; Gandhi, Varsha (2017) Duvelisib: a phosphoinositide-3 kinase ?/? inhibitor for chronic lymphocytic leukemia. Expert Opin Investig Drugs 26:625-632
Vangapandu, Hima V; Chen, Huiqin; Wierda, William G et al. (2017) Proteomics profiling identifies induction of caveolin-1 in chronic lymphocytic leukemia cells by bone marrow stromal cells. Leuk Lymphoma :1-12
Rassenti, Laura Z; Balatti, Veronica; Ghia, Emanuela M et al. (2017) MicroRNA dysregulation to identify therapeutic target combinations for chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 114:10731-10736
Kipps, Thomas J; Stevenson, Freda K; Wu, Catherine J et al. (2017) Chronic lymphocytic leukaemia. Nat Rev Dis Primers 3:16096
Vangapandu, Hima V; Havranek, Ondrej; Ayres, Mary L et al. (2017) B-cell Receptor Signaling Regulates Metabolism in Chronic Lymphocytic Leukemia. Mol Cancer Res 15:1692-1703

Showing the most recent 10 out of 552 publications