We examined the response of patients who received intravenous infusions of autologous leukemia cells transduced ex vivo to express a recombinant CDI 54 (termed """"""""Ad-CD154 gene-Rx""""""""). We found such treatment could induce p53-dependent genes encoding pro-apoptotic proteins in non-transduced """"""""bystander"""""""" CLL cells that lacked functional p53 via c-abl-kinase activafion of TAp7S. Activation of TAp7S could sensitize such drug-resistant CLL cells to the cytotoxic effects of drugs that ordinarily require functional p53. Ad-CD154 gene Rx also could induce auto antibodies to ROR1, which found absent on normal adult tissues, but expressed on CLL cells of virtually all cases, where it plays an apparent role in pathogenesis. We hypothesize that treatment of CLL patients with lenalidomide might mimic these effects of Ad-CDI 54 gene Rx. We also propose that ROR1could serve as an excellent target for development of novel therapies. Finally, ROR1 is one of several receptors for factors engaged in the cross talk between CLL cells and its microenvironment. CLL cells simulated by nurse like cells (NLC) found in the CLL microenvironment are induced to elaborate chemokines (CCLS and CCL4) that can recruit T cells and NLC-precursor cells to the microenvironment. Preliminary data suggest that the serum levels of CCL3/CCL4 might serve as surrogate markers of disease activity and possibly of early response to novel therapies intended to induce immune activation or cause disruption of the CLL microenvironment that are being investigated by the CRC. To take advantage of these observations we have the following specific aims: 1. Evaluate whether lenalidomide can induce anti-ROR1 auto antibodies and mimic the capacity of Ad-CDI 54 Gene Rx to enhance sensitivity of drug-resistant CLL cells to chemotherapy. Determine whether such effects are noted primarily in patients who are most likely to respond favorably to lenalidomide;2. Evaluate expression levels of CCLS and CCL4 in relation to disease progression or response to treatment strategies intended to induce immune activation or disrupt the CLL microenvironment;3. Evaluate strategies to target RORI with RORI vaccines, anti-ROR1 mAbs, T cells bearing ROR1-specific chimeric antigen receptors, or drug-laden liposomes that target ROR1.

Public Health Relevance

The studies in this project could define novel and effective therapies for patients with drug-refractory CLL or CLL in general. These studies also might validate surrogate markers of aggressive disease and/or response to therapy with agents intended to induce immune activation or disruption of the CLL microenvironment that are being investigated by the CRC.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA081534-14
Application #
8733427
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
14
Fiscal Year
2014
Total Cost
$239,121
Indirect Cost
$35,000
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Hasan, M K; Yu, J; Chen, L et al. (2017) Wnt5a induces ROR1 to complex with HS1 to enhance migration of chronic lymphocytic leukemia cells. Leukemia 31:2615-2622
Patel, V M; Balakrishnan, K; Douglas, M et al. (2017) Duvelisib treatment is associated with altered expression of apoptotic regulators that helps in sensitization of chronic lymphocytic leukemia cells to venetoclax (ABT-199). Leukemia 31:1872-1881
Patel, Viralkumar; Balakrishnan, Kumudha; Bibikova, Elena et al. (2017) Comparison of Acalabrutinib, A Selective Bruton Tyrosine Kinase Inhibitor, with Ibrutinib in Chronic Lymphocytic Leukemia Cells. Clin Cancer Res 23:3734-3743
Edelmann, J; Tausch, E; Landau, D A et al. (2017) Frequent evolution of copy number alterations in CLL following first-line treatment with FC(R) is enriched with TP53 alterations: results from the CLL8 trial. Leukemia 31:734-738
Miller, Cecelia R; Ruppert, Amy S; Fobare, Sydney et al. (2017) The long noncoding RNA, treRNA, decreases DNA damage and is associated with poor response to chemotherapy in chronic lymphocytic leukemia. Oncotarget 8:25942-25954
Vangapandu, Hima V; Jain, Nitin; Gandhi, Varsha (2017) Duvelisib: a phosphoinositide-3 kinase ?/? inhibitor for chronic lymphocytic leukemia. Expert Opin Investig Drugs 26:625-632
Vangapandu, Hima V; Chen, Huiqin; Wierda, William G et al. (2017) Proteomics profiling identifies induction of caveolin-1 in chronic lymphocytic leukemia cells by bone marrow stromal cells. Leuk Lymphoma :1-12
Rassenti, Laura Z; Balatti, Veronica; Ghia, Emanuela M et al. (2017) MicroRNA dysregulation to identify therapeutic target combinations for chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 114:10731-10736
Kipps, Thomas J; Stevenson, Freda K; Wu, Catherine J et al. (2017) Chronic lymphocytic leukaemia. Nat Rev Dis Primers 3:16096
Vangapandu, Hima V; Havranek, Ondrej; Ayres, Mary L et al. (2017) B-cell Receptor Signaling Regulates Metabolism in Chronic Lymphocytic Leukemia. Mol Cancer Res 15:1692-1703

Showing the most recent 10 out of 552 publications