;PROJECT 4 : Immune Tolerance and Stem Cell Transplantation Impaired immune responses are common in cancer and a particular feature of chronic lymphocytic leukemia (CLL). The immune dyfuction in CLL is characterised by hypogammaglobulinemia and autoimmune phenomena and infectious complications are a major cause of morbidity and mortality in this disease. Previous work in this Program has demonstrated a direct effect of CLL cells on T cells, both in human samples and in the Eji-TCL1 transgenic mouse model of this disease, that result in changes in actin polymerization in T and NK cells and failure of these cells to mount effective immune synapses with antigen presenting cells. The central hypothesis of this project Is that specific T cell defects result from interaction of CLL cells with the patient's immune system and that repair of these defects will be required to maximize T cell mediated immune responses in vivo. We therefore seek to characterize the basis for defective immune cell function in CLL and repair these defects for future therapeutic intervention. We shall examine this in human samples from patients with CLL and in an E(i-TCL1 transgenic mouse model of this disease. Since most agents that are used to treat CLL also add to the immune suppression, the project will determine whether novel agents in clinical trials in this Program have impact on the host immune system and are therefore likely to worsen immune function. Work will also be performed to assess the nature of T cell mediated anti-tumor immune responses against CLL cells and to determine if these specific T cell responses occur following allogeneic stem cell transplantation for CLL. The goal here is to characterize the nature ofthe graft versus leukemia effect in CLL. To address these issues this project will address the following specific aims: First, to define the molecular mechanism whereby molecules expressed by CLL cells induce dysfunction in T and NK cell in patients with CLL and the role of immunomodulatory drug intervention to repair these defects. The goal here is to improve immune function in CLL patients. Second, to assess the impact of in prevention of induction of T cell defects vivo in the Emu-TCLI transgenic mouse model of CLL and asses its impact on disease progression. Third, to characterize targets of graft versus leukemia effect in CLL after allogeneic stem cell transplantation in CTN/ CALGB 100701. Taken together, these studies will assess the impact of immune mediated responses in CLL.

Public Health Relevance

This project has demonstrated that CLL cells induce defects in the host immune. In keeping with our original hypothesis that CLL would act as a model disease, based on this knowledge, we have demonstrated similar defects in actin polymerization in T cells in patients with other hematologic malignancies including acute myeloid leukemia, follicular lymphoma, diffuse large cell lymphoma, myeloma, breast, ovarian and pancreatic cancer. Findings from this Project therefore have broad implications in cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
La Jolla
United States
Zip Code
Hasan, M K; Yu, J; Chen, L et al. (2017) Wnt5a induces ROR1 to complex with HS1 to enhance migration of chronic lymphocytic leukemia cells. Leukemia 31:2615-2622
Patel, V M; Balakrishnan, K; Douglas, M et al. (2017) Duvelisib treatment is associated with altered expression of apoptotic regulators that helps in sensitization of chronic lymphocytic leukemia cells to venetoclax (ABT-199). Leukemia 31:1872-1881
Patel, Viralkumar; Balakrishnan, Kumudha; Bibikova, Elena et al. (2017) Comparison of Acalabrutinib, A Selective Bruton Tyrosine Kinase Inhibitor, with Ibrutinib in Chronic Lymphocytic Leukemia Cells. Clin Cancer Res 23:3734-3743
Edelmann, J; Tausch, E; Landau, D A et al. (2017) Frequent evolution of copy number alterations in CLL following first-line treatment with FC(R) is enriched with TP53 alterations: results from the CLL8 trial. Leukemia 31:734-738
Miller, Cecelia R; Ruppert, Amy S; Fobare, Sydney et al. (2017) The long noncoding RNA, treRNA, decreases DNA damage and is associated with poor response to chemotherapy in chronic lymphocytic leukemia. Oncotarget 8:25942-25954
Vangapandu, Hima V; Jain, Nitin; Gandhi, Varsha (2017) Duvelisib: a phosphoinositide-3 kinase ?/? inhibitor for chronic lymphocytic leukemia. Expert Opin Investig Drugs 26:625-632
Vangapandu, Hima V; Chen, Huiqin; Wierda, William G et al. (2017) Proteomics profiling identifies induction of caveolin-1 in chronic lymphocytic leukemia cells by bone marrow stromal cells. Leuk Lymphoma :1-12
Rassenti, Laura Z; Balatti, Veronica; Ghia, Emanuela M et al. (2017) MicroRNA dysregulation to identify therapeutic target combinations for chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 114:10731-10736
Kipps, Thomas J; Stevenson, Freda K; Wu, Catherine J et al. (2017) Chronic lymphocytic leukaemia. Nat Rev Dis Primers 3:16096
Vangapandu, Hima V; Havranek, Ondrej; Ayres, Mary L et al. (2017) B-cell Receptor Signaling Regulates Metabolism in Chronic Lymphocytic Leukemia. Mol Cancer Res 15:1692-1703

Showing the most recent 10 out of 552 publications