The purpose of the Administrative Core is to ensure the efficient execution of all aspects of the Program Aims and to maintain quality control within the Program. One of the major aspirations of the Program and the Principal Investigator is to create an ethos for maximal integration of the components to better serve this PPG, the field of PDT, cancer research, and the community at large. To this end, she has brought together a team of new and existing scientists and physicians who are already collaborating enthusiastically. A change in this cycle is the addition of Dr. Pogue to this Core, which wjll be key for the two new additional functions, and the addition of Dr. Verma as the Program Manager. In addition to the two broad functions of Scientific and Administrative coordination, the renewal application adds the goals of career development, intellectual property (IP) development, and data sharing to this Core. The scientific coordination will be maintained through a variety of mechanisms that will include regular intra- and inter- Project/Core meetings. Two formal steering groups provide oversight of the Program: an Executive Steering Committee (ESC) and an external Scientific Advisory Board (SAB). The ESC consists of the individual Project Leaders and Core Directors and co- Directors;each member has expertise in a different aspect of the Program. This Core will: a) perform monthly reviews and identify obstacles;b) coordinate two ESC meetings per year, with selected consultants and key personnel in Boston;c) organize an SAB and a follow-up action plan meeting of the ESC;and lastly d) achieve additional scientific enhancement via a mini-symposium of one speaker/year on topics within the larger perspective of cancer biology relevant to the Program, but not directly in the area of PDT. As PDT does not clearly fit into an existing medical paradigm, special care will need to be taken to ensure that where appropriate, technologies get IP protection and find optimal development partners consistent with one of the goals of the NIH Roadmap for private-public partnerships. The career advancement goal captures the Core Leaders'strengths at their respective institutions and will intentionally encourage and recruit promising young investigators to scientific education and PDT, and ultimately help with placement of appropriate individuals at high caliber scientific institutions. For administrative coordination, the Core will a) track funds for each Project, b) coordinate and compile reports to the NIH, c) maintain records for major equipment purchases, repairs, and service contracts pertinent to this Program, and d) track travel and make the most cost-effective arrangements. The Core will also be responsible for data sharing via its website, part of which will be publicly accessible and interactive. The scientific and administrative coordination described above is crucial to ensure efficient execution of the Program, enabling the many different components to perform optimally. Potential benefits to public health: this Core ensures the maximal integration and impact of NCI resources to develop new treatments for three cancers that are a burden to society in several different ways.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-P)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Huang, Huang-Chiao; Mallidi, Srivalleesha; Liu, Joyce et al. (2016) Photodynamic Therapy Synergizes with Irinotecan to Overcome Compensatory Mechanisms and Improve Treatment Outcomes in Pancreatic Cancer. Cancer Res 76:1066-77
Tangutoori, Shifalika; Spring, Bryan Q; Mai, Zhiming et al. (2016) Simultaneous delivery of cytotoxic and biologic therapeutics using nanophotoactivatable liposomes enhances treatment efficacy in a mouse model of pancreatic cancer. Nanomedicine 12:223-34
Obaid, Girgis; Broekgaarden, Mans; Bulin, Anne-Laure et al. (2016) Photonanomedicine: a convergence of photodynamic therapy and nanotechnology. Nanoscale 8:12471-503
Pogue, Brian W; Paulsen, Keith D; Samkoe, Kimberley S et al. (2016) Vision 20/20: Molecular-guided surgical oncology based upon tumor metabolism or immunologic phenotype: Technological pathways for point of care imaging and intervention. Med Phys 43:3143
Pogue, Brian W; Elliott, Jonathan T; Kanick, Stephen C et al. (2016) Revisiting photodynamic therapy dosimetry: reductionist & surrogate approaches to facilitate clinical success. Phys Med Biol 61:R57-89
Huggett, Matthew T; Tudzarova, Slavica; Proctor, Ian et al. (2016) Cdc7 is a potent anti-cancer target in pancreatic cancer due to abrogation of the DNA origin activation checkpoint. Oncotarget 7:18495-507
Spring, Bryan Q; Bryan Sears, R; Zheng, Lei Zak et al. (2016) A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways. Nat Nanotechnol 11:378-87
de Souza, Ana Luiza Ribeiro; Marra, Kayla; Gunn, Jason et al. (2016) Comparing desferrioxamine and light fractionation enhancement of ALA-PpIX photodynamic therapy in skin cancer. Br J Cancer 115:805-13
Mohammad, Goran Hamid; Olde Damink, S W M; Malago, Massimo et al. (2016) Pyruvate Kinase M2 and Lactate Dehydrogenase A Are Overexpressed in Pancreatic Cancer and Correlate with Poor Outcome. PLoS One 11:e0151635
Mallidi, Srivalleesha; Mai, Zhiming; Rizvi, Imran et al. (2015) In vivo evaluation of battery-operated light-emitting diode-based photodynamic therapy efficacy using tumor volume and biomarker expression as endpoints. J Biomed Opt 20:048003

Showing the most recent 10 out of 150 publications