The Biological Models, Molecular Pathology and Biostatistics Core will provide services and perform research to achieve the goals of the Program. By housing these three biological areas of research and service within a single core, we can standardize and validate the assaysand methods used in the various projects to insure meaningful interpretation of the wide array of data obtained.
The aims of the three arms of this Core are as follows. For the Biological Models arm, the aims are to develop and then provide to investigators novel biological models for the study of pancreatic cancer and non-melanoma skin cancers. Our extensive experience with orthotopic models (localized prostate Ca, metastatic colon Ca, disseminated ovarian Ca, and chemically induced oral Ca) forms the basis for establishing in vivo and in vitro 3D culture models for pancreatic cancer, and organotypic models for skin cancer. The goals of the Molecular Pathology & Microscopy arm will be achieved in 3 aims:
Aim 1 will provide histology services, Aim 2 will provide the molecular profiling of PDT response of cancer cells, and Aim 3 will provide the quantification of biomarkers for translational research in the form of tissue banking of specimens from the clinical projects. This is a research component of the Core and involves the identification of novel cancer biomarkers for diagnosis, prognosis, and for the monitoring of treatment response. Once the biomarkers are characterized, the Core will provide their quantification as a service, to investigators. The Core has extensive expertise in histopathology acquired during the previous funding period, and is able to provide histology services to projects in a timely and cost- effective fashion. The Biostatistics arm has two functions: (1) to facilitate data sharing between projects, and (2) to assist with statistical design and analysis for the projects. To facilitate data sharing between investigators from different sites, the Core will maintain databases;in collaboration with Core A, these will be posted on the Program website. Finally, the Core will offer the resources of a statistician to advise Projects at every stage (on experimental design, collection, and interpretation of results). The Program, throughpre- clinical and clinical studies, will develop novel treatment options for pancreatic and skin cancers. The Cores are essential components for the successful completion of the Projects in this Program. Furthermore, the Core will benefit public health in two major ways: (1) by providing the basis for future patient selection for treatment with PDT, (2) by data sharing with the scientific community wherever possible, human tissues characterized for relevant biomarkers with diagnostic or prognostic values for optimized molecule-based combination therapy strategies.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-P)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
O'Brien, Darragh P; Sandanayake, Neomal S; Jenkinson, Claire et al. (2015) Serum CA19-9 is significantly upregulated up to 2 years before diagnosis with pancreatic cancer: implications for early disease detection. Clin Cancer Res 21:622-31
Samkoe, Kimberley S; Tichauer, Kenneth M; Gunn, Jason R et al. (2014) Quantitative in vivo immunohistochemistry of epidermal growth factor receptor using a receptor concentration imaging approach. Cancer Res 74:7465-74
Skipworth, J R A; Keane, M G; Pereira, S P (2014) Update on the management of cholangiocarcinoma. Dig Dis 32:570-8
Huggett, Matthew T; Passant, Helen; Hurt, Chris et al. (2014) Outcome and patterns of care in advanced biliary tract carcinoma (ABC): experience from two tertiary institutions in the United Kingdom. Tumori 100:219-24
Jermyn, Michael; Davis, Scott C; Dehghani, Hamid et al. (2014) CT contrast predicts pancreatic cancer treatment response to verteporfin-based photodynamic therapy. Phys Med Biol 59:1911-21
Spring, Bryan Q; Abu-Yousif, Adnan O; Palanisami, Akilan et al. (2014) Selective treatment and monitoring of disseminated cancer micrometastases in vivo using dual-function, activatable immunoconjugates. Proc Natl Acad Sci U S A 111:E933-42
Spring, Bryan Q; Palanisami, Akilan; Hasan, Tayyaba (2014) Microscale receiver operating characteristic analysis of micrometastasis recognition using activatable fluorescent probes indicates leukocyte imaging as a critical factor to enhance accuracy. J Biomed Opt 19:066006
Kanick, Stephen Chad; Davis, Scott C; Zhao, Yan et al. (2014) Dual-channel red/blue fluorescence dosimetry with broadband reflectance spectroscopic correction measures protoporphyrin IX production during photodynamic therapy of actinic keratosis. J Biomed Opt 19:75002
Anand, Sanjay; Rollakanti, Kishore R; Horst, Ronald L et al. (2014) Combination of oral vitamin D3 with photodynamic therapy enhances tumor cell death in a murine model of cutaneous squamous cell carcinoma. Photochem Photobiol 90:1126-35
Keane, Margaret G; Bramis, Konstantinos; Pereira, Stephen P et al. (2014) Systematic review of novel ablative methods in locally advanced pancreatic cancer. World J Gastroenterol 20:2267-78

Showing the most recent 10 out of 101 publications