Project 1: Roles and Regulation of Mutant p53 and ANp63 in Breast Cancer Cells Carol Prives, Ph.D. Increasing evidence supports the likelihood that, in stark contrast to wild-type p53, tumor-derived mutant forms of p53 play roles in fostering tumor development, invasion and metastasis. To gain insight into the mechanism by which mutant p53 may play a role in breast cancer we adopted the

Public Health Relevance

Both mutant forms of p53 and the AN forms of p63 have been implicated in breast and bladder cancer, two of the major forms of human cancer. The goal of this program is to determine the mechanisms by which mutant p53 and DeltaNp63 regulate novel pathways discovered under the auspices of this program that are involved in these and other forms of cancer. The experiments we propose in many cases are derived from and dependent on inter-program collaborations.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA087497-13
Application #
8566827
Study Section
Special Emphasis Panel (ZCA1-RPRB-O)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
13
Fiscal Year
2013
Total Cost
$424,401
Indirect Cost
$80,156
Name
Columbia University (N.Y.)
Department
Type
DUNS #
049179401
City
New York
State
NY
Country
United States
Zip Code
10027
Castillo-Martin, Mireia; Collazo Lorduy, Ana; Gladoun, Nataliya et al. (2016) H-RAS mutation is a key molecular feature of pediatric urothelial bladder cancer. A detailed report of three cases. J Pediatr Urol 12:91.e1-7
Torrano, Veronica; Valcarcel-Jimenez, Lorea; Cortazar, Ana Rosa et al. (2016) The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nat Cell Biol 18:645-56
Yoh, Kathryn E; Regunath, Kausik; Guzman, Asja et al. (2016) Repression of p63 and induction of EMT by mutant Ras in mammary epithelial cells. Proc Natl Acad Sci U S A 113:E6107-E6116
Levine, Arnold J; Ting, David T; Greenbaum, Benjamin D (2016) P53 and the defenses against genome instability caused by transposons and repetitive elements. Bioessays 38:508-13
Vidal, Samuel J; Rodriguez-Bravo, Veronica; Quinn, S Aidan et al. (2015) A targetable GATA2-IGF2 axis confers aggressiveness in lethal prostate cancer. Cancer Cell 27:223-39
Zhao, Zhen; Chen, Chi-Chao; Rillahan, Cory D et al. (2015) Cooperative loss of RAS feedback regulation drives myeloid leukemogenesis. Nat Genet 47:539-43
Danielson, Laura S; Reavie, Linsey; Coussens, Marc et al. (2015) Limited miR-17-92 overexpression drives hematologic malignancies. Leuk Res 39:335-41
Epping, M T; Lunardi, A; Nachmani, D et al. (2015) TSPYL2 is an essential component of the REST/NRSF transcriptional complex for TGFβ signaling activation. Cell Death Differ 22:1353-62
Barber, Alison G; Castillo-Martin, Mireia; Bonal, Dennis M et al. (2015) PI3K/AKT pathway regulates E-cadherin and Desmoglein 2 in aggressive prostate cancer. Cancer Med 4:1258-71
Chakraborty, A A; Scuoppo, C; Dey, S et al. (2015) A common functional consequence of tumor-derived mutations within c-MYC. Oncogene 34:2406-9

Showing the most recent 10 out of 117 publications