This is the second renewal of our Program Project that has been in existence for over 10 years and which has been highly productive and interactive. The goals of this program will be realized through an interdisciplinary and collaborative approach to understand the roles of mutant p53, p53 family member's p63 and p73 and new tumor suppressor genes in cancer. Our approaches include cell biology, proteomics, microscopy, bioinformatics, functional genomics, mouse modeling and human and mouse pathology. As this program has progressed, our research has become more translational and relevant to human disease, now focusing on breast, bladder and lymphoma tumor genesis. Carol Prives will employ the 3D culture protocol to examine the roles of mutant p53 and p53 homologues (P63 and p73) in mammary cell morphology and oncogenic transformation. She will also characterize the mechanisms of ANp63 protein turnover in these contexts. Arnold Levine will pursue the observation that breast cancer cells with mutant p53 have a stem cell gene expression signature, and will test mutant p53 allele-specific drugs that were identified by novel bioinformatic approaches for treatment of cancer cells. Levine will also study the roles of SNPs in p63 or p73 that influence DNA repair systems in female eggs and copy number variation that affect cancer in offspring Scott Lowe will continue to study the genetic and molecular basis of lymphoma. He will perform shRNA screens using the Ep-Myc B cell model to identify new tumor suppressor genes. He will also examine the role of genes co-deleted with p53 in lymphoma on chromosome 17p testing the hypothesis that such genes may also have tumor suppressive activity. Additionally Lowe will study the impact of reactivation of latent p53 by down-regulation of Mdm2, as well as perform an shRNA screen to identify genes whose inhibition facilitates death of mutant-p53 dependent tumors. Cordon-Cardo will focus on p63 expression and roles in normal and cancerous bladder tissue in mice and humans. He will use specific shRNAs to characterize the impact of p63 isoforms during urothelial development in mice, and determine the expression of p63 isoforms in bladder carcinoma. Cordon-Cardo will also pursue identification of bladder stem cells and the mechanisms by which they are chemoresistant. This program is highly dependent on the functioning of cores that support the administration, histopathology, shRNAs, mouse modeling and bioinfomatics that is required for the proposed experiments. The projects are even more interdependent and interactive than before and as a result much of the proposed research cannot be done effectively without the support of this program.

Public Health Relevance

It is the goal of this program to understand and exploit the p53 network for improving cancer diagnoses id treatment. The proposed research will provide new insights into how loss or mutation of p53 results information of a tumor. It will also reveal how and when p53 family members, p63 and p73, play roles in cancer progression. New approaches to treating tumor cells will be tested. Finally, the role and presence of stem cells tumors will be evaluated.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA087497-14
Application #
8706055
Study Section
Special Emphasis Panel (ZCA1-RPRB-O (M1))
Program Officer
Watson, Joanna M
Project Start
2000-09-30
Project End
2016-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
14
Fiscal Year
2014
Total Cost
$1,717,762
Indirect Cost
$324,395
Name
Columbia University (N.Y.)
Department
Biology
Type
Other Domestic Higher Education
DUNS #
049179401
City
New York
State
NY
Country
United States
Zip Code
10027
Rokudai, Susumu; Li, Yingchun; Otaka, Yukihiro et al. (2018) STXBP4 regulates APC/C-mediated p63 turnover and drives squamous cell carcinogenesis. Proc Natl Acad Sci U S A 115:E4806-E4814
Rastogi, Chaitanya; Rube, H Tomas; Kribelbauer, Judith F et al. (2018) Accurate and sensitive quantification of protein-DNA binding affinity. Proc Natl Acad Sci U S A 115:E3692-E3701
Baugh, Evan H; Ke, Hua; Levine, Arnold J et al. (2018) Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ 25:154-160
Agmon, Eran; Solon, Jérôme; Bassereau, Patricia et al. (2018) Modeling the effects of lipid peroxidation during ferroptosis on membrane properties. Sci Rep 8:5155
Yozwiak, Carrie E; Hirschhorn, Tal; Stockwell, Brent R (2018) Toward a Microparticle-Based System for Pooled Assays of Small Molecules in Cellular Contexts. ACS Chem Biol 13:761-771
Hirschhorn, Tal; Stockwell, Brent R (2018) The development of the concept of ferroptosis. Free Radic Biol Med :
Liu, Hengrui; Schreiber, Stuart L; Stockwell, Brent R (2018) Targeting Dependency on the GPX4 Lipid Peroxide Repair Pathway for Cancer Therapy. Biochemistry 57:2059-2060
Conrad, Marcus; Kagan, Valerian E; Bayir, Hülya et al. (2018) Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev 32:602-619
Zhang, Yan; Larraufie, Marie-Hélène; Musavi, Leila et al. (2018) Design of Small Molecules That Compete with Nucleotide Binding to an Engineered Oncogenic KRAS Allele. Biochemistry 57:1380-1389
Shimada, Kenichi; Reznik, Eduard; Stokes, Michael E et al. (2018) Copper-Binding Small Molecule Induces Oxidative Stress and Cell-Cycle Arrest in Glioblastoma-Patient-Derived Cells. Cell Chem Biol 25:585-594.e7

Showing the most recent 10 out of 159 publications