The image registration core will perform research and development that support the broad range of image registration activities in Projects 1-3. The core will develop methods of image registration that can meet the stringent requirements of the projects in this proposal: fast computation, high spatial resolution, motion estimation, and management of uncertainty and registration error. Core B will develop software for the projects in the following areas: mapping histology back to in vivo image volumes (Project 1);estimating head motion for EPI speech activation studies (Project 2);and registering dynamic contrast enhanced (DCE) MRI breast volumes (Project 3). A general cross-cutting aim will be to quantify and predict registration uncertainty for the image registration algorithms used in the Projects.

Public Health Relevance

? This core will design state-of-the-art image registration software that will be applied to the management of cancer patient therapy. ,

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA087634-10
Application #
8445396
Study Section
Special Emphasis Panel (ZCA1-GRB-P)
Project Start
Project End
2015-02-28
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
10
Fiscal Year
2013
Total Cost
$202,499
Indirect Cost
$64,964
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Nataraj, Gopal; Nielsen, Jon-Fredrick; Fessler, Jeffrey (2016) Optimizing MR Scan Design for Model-Based T1, T2 Estimation from Steady-State Sequences. IEEE Trans Med Imaging :
Larson, Eric D; Lee, Won-Mean; Roubidoux, Marilyn A et al. (2016) Automated Breast Ultrasound: Dual-Sided Compared with Single-Sided Imaging. Ultrasound Med Biol 42:2072-82
Berisha, Visar; Wisler, Alan; Hero, Alfred O et al. (2016) Empirically Estimable Classification Bounds Based on a Nonparametric Divergence Measure. IEEE Trans Signal Process 64:580-591
Hero, Alfred O; Rajaratnam, Bala (2016) Foundational Principles for Large-Scale Inference: Illustrations Through Correlation Mining. Proc IEEE Inst Electr Electron Eng 104:93-110
Galbán, Craig J; Ma, Bing; Malyarenko, Dariya et al. (2015) Multi-site clinical evaluation of DW-MRI as a treatment response metric for breast cancer patients undergoing neoadjuvant chemotherapy. PLoS One 10:e0122151
Brisset, Jean-Christophe; Hoff, Benjamin A; Chenevert, Thomas L et al. (2015) Integrated multimodal imaging of dynamic bone-tumor alterations associated with metastatic prostate cancer. PLoS One 10:e0123877
Muckley, Matthew J; Noll, Douglas C; Fessler, Jeffrey A (2015) Fast parallel MR image reconstruction via B1-based, adaptive restart, iterative soft thresholding algorithms (BARISTA). IEEE Trans Med Imaging 34:578-88
Zhao, Feng; Fessler, Jeffrey A; Wright, Steven M et al. (2014) Regularized estimation of magnitude and phase of multi-coil b1 field via Bloch-Siegert B1 mapping and coil combination optimizations. IEEE Trans Med Imaging 33:2020-30
Boes, Jennifer L; Hoff, Benjamin A; Hylton, Nola et al. (2014) Image registration for quantitative parametric response mapping of cancer treatment response. Transl Oncol 7:101-10
Watanabe, Takanori; Kessler, Daniel; Scott, Clayton et al. (2014) Disease prediction based on functional connectomes using a scalable and spatially-informed support vector machine. Neuroimage 96:183-202

Showing the most recent 10 out of 85 publications