Molecular targeting in the AKT signaling pathway demonstrates significant potential as a combined modality approach to enhancing therapeutic response to PDT. Improvements in outcome when using this approach will clearly include the effect of molecular targeting agents on tumor microenvironment. In theory, molecular targeting could favorably modify the pre-PDT tumor environment so as to enhance cytotoxicity during PDT; it could also augment post-PDT vascular effects and tumor destruction. Consequently, the timing of molecular therapy relative to PDT deserves careful consideration. The rational development of translatable protocols incorporating PDT and molecular targeting will necessarily evolve from this research. Methods to be employed include custom-designed technologies in which we are well-experienced. Quantitative image analysis of immunohistochemically-stained sections will be used to define therapy effects on tumor oxygenation, vascular structure, and related histology. Diffuse optical spectroscopy will be used to longitudinally monitor tumor physiological processes, such as oxygenation and blood flow, over the course of treatment. We hypothesize that targeted molecular therapy in the AKT signaling pathway will selectively modulate tumor microenvironment, augmenting PDT tumor response without increasing normal tissue toxicity. Investigations conducted in orthotopic and ectopic tumor models of lung and ovarian cancer will be directed toward the following three aims.
SPECIFIC AIM 1. To quantify the microenvironmental and therapeutic consequences of VEGF, EGFR and/or AKT signal inhibition after PDT.
SPECIFIC AIM 2. To evaluate combined modality protocols that incorporate pre-PDT use of targeted molecular therapy and/or oxygen augmentation during PDT in order to produce a more favorable PDT microenvironment.
SPECIFIC AIM 3. To determine how VEGF, EGFR and/or AKT signal inhibition affect normal tissue toxicity to PDT.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA087971-10
Application #
8555154
Study Section
Special Emphasis Panel (ZCA1-GRB-P (O1))
Project Start
2000-07-01
Project End
2014-01-31
Budget Start
2012-02-01
Budget End
2013-01-31
Support Year
10
Fiscal Year
2012
Total Cost
$206,884
Indirect Cost
$75,234
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Kim, Michele M; Darafsheh, Arash; Ahmad, Mahmoud et al. (2016) PDT Dose Dosimeter for Pleural Photodynamic Therapy. Proc SPIE Int Soc Opt Eng 9694:96940Y
Sterman, Daniel H; Alley, Evan; Stevenson, James P et al. (2016) Pilot and Feasibility Trial Evaluating Immuno-Gene Therapy of Malignant Mesothelioma Using Intrapleural Delivery of Adenovirus-IFNα Combined with Chemotherapy. Clin Cancer Res 22:3791-800
Ong, Yi Hong; Zhu, Timothy C (2016) Analytic function for predicting light fluence rate of circular fields on a semi-infinite turbid medium. Opt Express 24:26261-26281
Ghogare, Ashwini A; Miller, Joann M; Mondal, Bikash et al. (2016) Fluorinated Photodynamic Therapy Device Tips and their Resistance to Fouling for In Vivo Sensitizer Release. Photochem Photobiol 92:166-72
Grossman, Craig E; Carter, Shirron L; Czupryna, Julie et al. (2016) Fluence Rate Differences in Photodynamic Therapy Efficacy and Activation of Epidermal Growth Factor Receptor after Treatment of the Tumor-Involved Murine Thoracic Cavity. Int J Mol Sci 17:
Penjweini, Rozhin; Kim, Michele M; Dimofte, Andrea et al. (2016) Deformable medical image registration of pleural cavity for photodynamic therapy by using finite-element based method. Proc SPIE Int Soc Opt Eng 9701:970106
Zhu, Timothy C; Lu, Amy; Ong, Yi-Hong (2016) An improved analytic function for predicting light fluence rate in circular fields on a semi-infinite geometry. Proc SPIE Int Soc Opt Eng 9706:97061D
Penjweini, Rozhin; Kim, Michele M; Liu, Baochang et al. (2016) Evaluation of the 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide (HPPH) mediated photodynamic therapy by macroscopic singlet oxygen modeling. J Biophotonics 9:1344-1354
Penjweini, Rozhin; Kim, Michele M; Finlay, Jarod C et al. (2016) Investigating the impact of oxygen concentration and blood flow variation on photodynamic therapy. Proc SPIE Int Soc Opt Eng 9694:
Gemmell, Nathan R; McCarthy, Aongus; Kim, Michele M et al. (2016) A compact fiber-optic probe-based singlet oxygen luminescence detection system. J Biophotonics :

Showing the most recent 10 out of 99 publications