Project 2 Abstract: Recent results generated by the Program Project have shown that the overall survival after surgery/PDT exceeds any previous reported series. One hypothesis suggested by these data is that pPDT is inducing an immune response against the recurrent tumor and this response is inhibiting the growth of the tumor leading to prolonged survival. There is extensive animal data with PDT (without surgery) showing that, in addition to its direct cytotoxic effects, PDT also induces anti-tumor immune responses capable of affecting distant tumor. There are also a few clinical reports suggesting that PDT alone can induce anti-tumor immune responses. To date, we have no direct evidence from our patients to confirm or refute this immune hypothesis. The new randomized clinical trial design where patients will either receive surgery with pPDT or surgery alone provides a unique opportunity to test the immune response hypothesis and to define these immune responses. To do so, we will work with Project 1 and will evaluate the immune responses generated by surgery/pPDT versus surgery in patients with malignant mesothelioma (Specific Aim 1). This will be accomplished by: A) evaluating the blood leukocyte response to surgery/pPDT in comparison to surgery alone and in relationship to anti-tumor efficacy, B) evaluating anti-tumor humoral immune responses to known and unknown mesothelioma antigens induced by surgery/pPDT in comparison to surgery alone, c) evaluating anti- tumor cellular immune responses induced by surgery/pPDT in comparison to surgery alone, and d) evaluating the cytokine response to surgery/pPDT in relationship to anti-tumor efficacy. In addition to evaluating our clinical subjects, we propose one preclinical, translational aim with the goal of developing improved approaches based on exciting preliminary data. In conjunction with the Animal Core and Projects 3 and 4, we will use novel animal models of surgery/PDT to evaluate the hypothesis that the anti-tumor immune response generated by surgery/PDT can be augmented by inhibition of inflammation (COX-2 inhibitor or IL-6 inhibition) (Specific Aim 2). If supported by these aims, our goal would be to initiate a future clinical trial in which we will combine surgery/pPDT with COX-2 inhibition or anti-IL-6 antibodies.

Public Health Relevance

Project 2 Narrative By testing blood samples from patients in our clinical trial, this project will determine if using surgery plus photodynamic therapy (PDT) for treatment of mesothelioma induces anti-tumor immune responses that enhance the efficacy of treatment. New animal models of combined surgery/PDT will also be used to test ways to understand and improve the anti-tumor immune response.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-B (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
United States
Zip Code
Simone 2nd, Charles B; Cengel, Keith A (2014) Photodynamic therapy for lung cancer and malignant pleural mesothelioma. Semin Oncol 41:820-30
Han, Sung Wan; Mesquita, Rickson C; Busch, Theresa M et al. (2014) A Method for Choosing the Smoothing Parameter in a Semi-parametric Model for Detecting Change-points in Blood Flow. J Appl Stat 41:26-45
Liang, Xing; Wang, Ken Kang-Hsin; Zhu, Timothy C (2013) Feasibility of interstitial diffuse optical tomography using cylindrical diffusing fibers for prostate PDT. Phys Med Biol 58:3461-80
Maas, Amanda L; Carter, Shirron L; Wileyto, E Paul et al. (2012) Tumor vascular microenvironment determines responsiveness to photodynamic therapy. Cancer Res 72:2079-88
Friedberg, Joseph S; Culligan, Melissa J; Mick, Rosemarie et al. (2012) Radical pleurectomy and intraoperative photodynamic therapy for malignant pleural mesothelioma. Ann Thorac Surg 93:1658-65; discussion 1665-7
Grossman, Craig E; Pickup, Stephen; Durham, Amy et al. (2011) Photodynamic therapy of disseminated non-small cell lung carcinoma in a murine model. Lasers Surg Med 43:663-75
Sandell, Julia L; Zhu, Timothy C (2011) A review of in-vivo optical properties of human tissues and its impact on PDT. J Biophotonics 4:773-87
Busch, Theresa M; Wang, Hsing-Wen; Wileyto, E Paul et al. (2010) Increasing damage to tumor blood vessels during motexafin lutetium-PDT through use of low fluence rate. Radiat Res 174:331-40
Wang, Ken Kang-Hsin; Finlay, Jarod C; Busch, Theresa M et al. (2010) Explicit dosimetry for photodynamic therapy: macroscopic singlet oxygen modeling. J Biophotonics 3:304-18
Busch, Theresa M (2010) Hypoxia and perfusion labeling during photodynamic therapy. Methods Mol Biol 635:107-20

Showing the most recent 10 out of 37 publications