Homologous recombination repair (HRR) eliminates deleterious chromosome lesions and is therefore critical for the maintenance of genome stability. In humans, defects in HRR lead to the tumor phenotype. Studies conducted during the last funding cycle have led to major advances in understanding HRR proteins and mechanisms. Capitalizing on this past success, a combinatorial approach encompassing structural, biochemical, and biological studies will be employed to delineate the integrated roles that several tumor suppressor proteins play in the HRR pathway. The results from this project will allow us to formulate detailed models of HRR mechanisms in human cells. Given the importance of HRR in tumor suppression and in the removal of DNA crosslinks induced by chemotherapeutic agents, our studies have direct relevance to cancer biology and to the development of molecules to evaluate the potential of HRR pathway-targeted therapeutic strategies. As in the past, we will rely on the EMB-ML and SCB cores for their expertise and services. Importantly, our studies will create significant synergy with Projects 2, 3, 5 and 6 and draw links to the entire program, and will thus enhance the impact and significance of our research findings. We anticipate our investigations to help drive the search for connections among HRR and other DNA repair pathways and thereby enable the SBDR program to remain at the frontier of understanding the integrated cellular response to damaged DNA.

Public Health Relevance

Failure to repair damaged chromosome compromises the integrity of the genome and can lead to cancer formation. The proposed studies will delineate the role of several tumor suppressors and their partner proteins in the homologous recombinational repair of DNA double-strand breaks. The results will have direct relevance to understanding the role of DNA repair in cancer biology.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Lawrence Berkeley National Laboratory
United States
Zip Code
Feldkamp, Michael D; Mason, Aaron C; Eichman, Brandt F et al. (2014) Structural analysis of replication protein A recruitment of the DNA damage response protein SMARCAL1. Biochemistry 53:3052-61
Groocock, Lynda M; Nie, Minghua; Prudden, John et al. (2014) RNF4 interacts with both SUMO and nucleosomes to promote the DNA damage response. EMBO Rep 15:601-8
Paull, Tanya T; Deshpande, Rajashree A (2014) The Mre11/Rad50/Nbs1 complex: recent insights into catalytic activities and ATP-driven conformational changes. Exp Cell Res 329:139-47
Shibata, Atsushi; Moiani, Davide; Arvai, Andrew S et al. (2014) DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities. Mol Cell 53:7-18
Mahaney, Brandi L; Lees-Miller, Susan P; Cobb, Jennifer A (2014) The C-terminus of Nej1 is critical for nuclear localization and non-homologous end-joining. DNA Repair (Amst) 14:9-16
Frank, Andreas O; Vangamudi, Bhavatarini; Feldkamp, Michael D et al. (2014) Discovery of a potent stapled helix peptide that binds to the 70N domain of replication protein A. J Med Chem 57:2455-61
Wu, Ching-Shyi; Ouyang, Jian; Mori, Eiichiro et al. (2014) SUMOylation of ATRIP potentiates DNA damage signaling by boosting multiple protein interactions in the ATR pathway. Genes Dev 28:1472-84
Davis, Anthony J; Chen, Benjamin P C; Chen, David J (2014) DNA-PK: a dynamic enzyme in a versatile DSB repair pathway. DNA Repair (Amst) 17:21-9
Zhao, Weixing; Saro, Dorina; Hammel, Michal et al. (2014) Mechanistic insights into the role of Hop2-Mnd1 in meiotic homologous DNA pairing. Nucleic Acids Res 42:906-17
Longerich, Simonne; Kwon, Youngho; Tsai, Miaw-Sheue et al. (2014) Regulation of FANCD2 and FANCI monoubiquitination by their interaction and by DNA. Nucleic Acids Res 42:5657-70

Showing the most recent 10 out of 300 publications