DNA mismatch repair is a major contributor to genetic stability. Mismatch repair defects confer strong cancer predisposition and have implications for cancer therapy because inactivation of the pathway renders cells resistant to the cytotoxic effects of certain anti-tumor drugs, a consequence of participation of the system in the DNA damage response. Perhaps surprisingly, mismatch repair function is also required for production of certain mutations, such as the expansion of (CAG){n} repeat sequences, the primary cause of a number of neurodegenerative diseases. The goals of this project to clarify conformations, conformational variation, and structures of multi-protein, protein-DNA, and multi-protein DNA assemblies that are key intermediates in DNA lesion processing and damage signaling by the mismatch repair system.
Our aims are 3-fold: (1) Using deuterium exchange mass spectrometry (DXMS), we have identified regions of bacterial MutS and eukaryotic MutS-alpha (MSH2-MSH6) that undergo substrate-dependent conformational transitions. These regions will be subjected to site-directed mutagenesis and the resulting mutants characterized for their impact on mismatch repair both in vivo and in vitro. (2) Small angle X-ray scattering, equilibrium methods, DXMS, x-ray crystallographic, biochemical and genetic approaches as appropriate will be utilized to extend our understanding of multi-protein assemblies involved in mismatch repair. These assemblies will include PCNA complexes with MutS-alpha (MSH2-MSH6) and MutL-alpha (MLH1-PMS1/PMS2), MutSa complexes with exonuclease 1 and with Chk1, and the complex between exonuclease 1 and the BLM helicase. The latter study will be pursued in collaboration with Project 4. (3) Human MutS-alpha and MutS-Beta differ in the manner in which they interact with PCNA and MutL-alpha, indicating that MutS-alpha- and MutS-Beta-triggered repair events proceed by significantly different mechanisms. In view of the known involvement of MutS-Beta and MutL-alpha in the somatic phase (CAG){n}:(CTG){n}, triplet repeat expansion, we will seek small molecule inhibitors that specifically block MutS Beta-triggered repair events by screening for compounds that selectively block assembly the MutL-alpha-MutS-Beta-DNA ternary complex.

Public Health Relevance

DNA mismatch repair provides multiple mutation avoidance functions. Inactivation of the pathway is the cause of both inherited and sporadic cancers, but also renders tumor cells resistant to certain chemotherapeutic regimens. The goals of this project are to clarify conformations and structures of multi-protein, protein-DNA, and multi-protein-DNA assemblies that are intermediates in lesion processing by this DNA repair system, providing insights into a pathway that impacts the development and treatment of cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA092584-13
Application #
8567647
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
13
Fiscal Year
2013
Total Cost
$295,500
Indirect Cost
$90,322
Name
Lawrence Berkeley National Laboratory
Department
Type
DUNS #
078576738
City
Berkeley
State
CA
Country
United States
Zip Code
94720
Liang, Fengshan; Longerich, Simonne; Miller, Adam S et al. (2016) Promotion of RAD51-Mediated Homologous DNA Pairing by the RAD51AP1-UAF1 Complex. Cell Rep 15:2118-26
Jiang, Bingcheng; Glover, J N Mark; Weinfeld, Michael (2016) Neurological disorders associated with DNA strand-break processing enzymes. Mech Ageing Dev :
Stingele, Julian; Bellelli, Roberto; Alte, Ferdinand et al. (2016) Mechanism and Regulation of DNA-Protein Crosslink Repair by the DNA-Dependent Metalloprotease SPRTN. Mol Cell 64:688-703
Hammel, Michal; Amlanjyoti, Dhar; Reyes, Francis E et al. (2016) HU multimerization shift controls nucleoid compaction. Sci Adv 2:e1600650
Brosey, Chris A; Ho, Chris; Long, Winnie Z et al. (2016) Defining NADH-Driven Allostery Regulating Apoptosis-Inducing Factor. Structure 24:2067-2079
Hodge, Curtis D; Ismail, Ismail H; Edwards, Ross A et al. (2016) RNF8 E3 Ubiquitin Ligase Stimulates Ubc13 E2 Conjugating Activity That Is Essential for DNA Double Strand Break Signaling and BRCA1 Tumor Suppressor Recruitment. J Biol Chem 291:9396-410
Balestrini, Alessia; Nicolas, Laura; Yang-Lott, Katherine et al. (2016) Defining ATM-Independent Functions of the Mre11 Complex with a Novel Mouse Model. Mol Cancer Res 14:185-95
Lai, Yanhao; Budworth, Helen; Beaver, Jill M et al. (2016) Crosstalk between MSH2-MSH3 and polβ promotes trinucleotide repeat expansion during base excision repair. Nat Commun 7:12465
Patrone, James D; Pelz, Nicholas F; Bates, Brittney S et al. (2016) Identification and Optimization of Anthranilic Acid Based Inhibitors of Replication Protein A. ChemMedChem 11:893-9
Yang, Chunying; Sengupta, Shiladitya; Hegde, Pavana M et al. (2016) Regulation of oxidized base damage repair by chromatin assembly factor 1 subunit A. Nucleic Acids Res :

Showing the most recent 10 out of 408 publications