Project 3 (Double-Strand Break Sensing, Signaling, and Repair) Integrates into SBDRS by focusing upon early DNA double strand break (DSB) repair and signaling responses. DSBs are highly toxic and mutagenic. Failure to expeditiously repair DSBs leads to cell death, chromosomal rearrangements, and human disorders, especially cancer. Proteins acting In DSB prevention and repair are associated with breast and ovarian cancer (BRCA1, BRCA2, Mre11), Nijmegen Breakage Syndrome (Nbs1, Rad50), and Ataxia telangiectasia (ATM, Mre11). DSB generation is moreover a primary means for cancer treatment;recent breakthroughs show that tumors with DSB repair deficiencies can be effectively targeted in combination therapies by poly-ADP ribose polymerase-1 inhibitors, a concept termed synthetic lethality. Thus, a molecular-level view of how cells sense, signal and repair DSBs is critical for understanding cancer risk, responses of normal and cancer cells to cancer treatments, and development of advanced cancer therapies that target the Achilles'heel of repair defects common to all cancer cells. Our project has led to seminal progress on structures, interactions, and conformational switches in the Mre11-Rad50-Nbs1 (MRN) complex and DNA-PK responses to DSBs. These results suggest that interaction states coupled with their allosteric regulation control biological outcomes to DSBs: they direct repair to either error-free or error-prone pathways, controlling genetic Integrity or aberration, and ultimately cell survival or death. Building upon our progress, we propose three Aims to characterize the structural cell biology of DSB responses for 1) the MRN complex, 2) DNA-PK and NHEJ complexes, and 3) DSB repair pathway coordination, control and regulation. Together these Alms will characterize pathway and cross-pathway interactions in vivo and In vitro for DSB response proteins to identify pathway connections and nodes for therapeutic intervention and synthetic lethality approaches. Project 3 has tight synergies with all other Projects and both scientific Cores. The anticipated outcome of the proposed cross-disciplinary experiments is a detailed molecular picture of the protein-DNA complexes, protein-protein interactions and functional states that orchestrate DSB sensing, repair, and signaling events mediated by MRN and DNA-PK. This picture will provide the molecular foundation for a detailed understanding of human diseases and cancer predispositions linked to MRN and DNA-PK proteins. Moreover, our analyses of interaction interfaces and conformational changes that control biological outcomes will highlight targets for therapeutic Interventions and provide chemical inhibitors as tools to test innovative new approaches for future advanced cancer therapies.

Public Health Relevance

The Achilles'heel of most cancer cells is defects in DNA repair and cell cycle checkpoints that cause them to enter cell division before repair Is complete, resulting in cell death. Thus, many cancers are treated by radiation and chemotherapies to generate DNA double strand breaks (DSBs) that overload repair In tumor cells but not In normal cells, which are better protected by redundant repair pathways. Project 3 will characterize DSB repair circuits to reveal tumor vulnerabilities that are key to short-circuiting DNA repair and specifically killing cancer cells while not harming better protected normal cells.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Lawrence Berkeley National Laboratory
United States
Zip Code
Sengupta, Shiladitya; Yang, Chunying; Hegde, Muralidhar L et al. (2018) Acetylation of oxidized base repair-initiating NEIL1 DNA glycosylase required for chromatin-bound repair complex formation in the human genome increases cellular resistance to oxidative stress. DNA Repair (Amst) 66-67:1-10
Mu, Hong; Geacintov, Nicholas E; Broyde, Suse et al. (2018) Molecular basis for damage recognition and verification by XPC-RAD23B and TFIIH in nucleotide excision repair. DNA Repair (Amst) :
Chavez, Diana A; Greer, Briana H; Eichman, Brandt F (2018) The HIRAN domain of helicase-like transcription factor positions the DNA translocase motor to drive efficient DNA fork regression. J Biol Chem 293:8484-8494
Wang, Jing L; Duboc, Camille; Wu, Qian et al. (2018) Dissection of DNA double-strand-break repair using novel single-molecule forceps. Nat Struct Mol Biol 25:482-487
Crickard, J Brooks; Kaniecki, Kyle; Kwon, Youngho et al. (2018) Meiosis-specific recombinase Dmc1 is a potent inhibitor of the Srs2 antirecombinase. Proc Natl Acad Sci U S A 115:E10041-E10048
Syed, Aleem; Tainer, John A (2018) The MRE11-RAD50-NBS1 Complex Conducts the Orchestration of Damage Signaling and Outcomes to Stress in DNA Replication and Repair. Annu Rev Biochem 87:263-294
Howes, Timothy R L; Sallmyr, Annahita; Brooks, Rhys et al. (2018) Erratum to ""Structure-activity relationships among DNA ligase inhibitors; characterization of a selective uncompetitive DNA ligase I inhibitor"" [DNA Repair 60C (2017) 29-39]. DNA Repair (Amst) 61:99
Bhattacharyya, Sudipta; Soniat, Michael M; Walker, David et al. (2018) Phage Mu Gam protein promotes NHEJ in concert with Escherichia coli ligase. Proc Natl Acad Sci U S A 115:E11614-E11622
Tsai, Chi-Lin; Tainer, John A (2018) Robust Production, Crystallization, Structure Determination, and Analysis of [Fe-S] Proteins: Uncovering Control of Electron Shuttling and Gating in the Respiratory Metabolism of Molybdopterin Guanine Dinucleotide Enzymes. Methods Enzymol 599:157-196
Ogorzalek, Tadeusz L; Hura, Greg L; Belsom, Adam et al. (2018) Small angle X-ray scattering and cross-linking for data assisted protein structure prediction in CASP 12 with prospects for improved accuracy. Proteins 86 Suppl 1:202-214

Showing the most recent 10 out of 484 publications