Despite active repair and proofreading mechanisms, the replication machinery encounters unrepaired lesions and other forms of replication stress every cell division cycle. Therefore, completing DNA replication faithfully requires specialized replication stress response and error correction mechanisms. Replication fork remodeling by DNA translocases and nucleases can stabilize and repair damaged replication forks while mismatch repair enzymes can correct polymerase errors. However, inactivation or improper regulation of these enzymes generates DNA sequence changes that fuel cancer development. For example, inactivation of mismatch repair (MMR) is the most frequent cause of inherited cancers. Furthermore, oncogenes generate elevated levels of replication stress. While the genetic instability that results from these changes can promote tumorigenesis, it also makes cancer cells more dependent on the remaining replication stress response and repair pathways. Thus, these properties of cancer cells provide therapeutic opportunities that can be exploited by both traditional chemotherapeutic and radiation therapies that target DNA and newer agents like PARP inhibitors that more selectively utilize synthetic lethality to kill cancer cells. The guiding principle of this project is that understanding how replication stress and fork repair activities work in normal and cancer cells is critical to understand both the etiology of cancer and to develop and deploy new therapies. A five-member team of investigators with expertise spanning structural biology, biochemistry, biophysics, genetics, and cell biology will focus on the key regulatory nodes that direct replication-associated repair activities. We will capitalize on the progress made in the last funding period, the ongoing research in project member laboratories, and the synergy created by employing multiple experimental approaches to address the following specific aims: (1) define the mechanisms by which the fork remodeling proteins ZRANB3, HLTF, and SMARCAL1 repair damaged replication forks; (2) define the unique replication-associated cellular functions of fork remodeling proteins; and (3) define mechanisms controlling nuclease activities at replication forks. Collaborations with other SBDR projects will ensure the highest impact of our studies. For example, we will work with project 1 to understand RPA function, project 3 to examine activities of HRR proteins in fork repair, project 4 to explore the mechanism of action of PARP inhibitors, and project 5 to examine the role of MRN proteins at replication forks.

Public Health Relevance

Project 2 ? Replication Fork Repair PROJECT NARRATIVE Defects in replication-associated repair activities cause cancer. Completion of this project will discover mechanisms ensuring accurate genetic inheritance and may assist in the future translation of these discoveries into the clinic to benefit cancer patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA092584-16
Application #
9151309
Study Section
Special Emphasis Panel (ZCA1-RPRB-O (M1))
Project Start
Project End
Budget Start
2016-09-01
Budget End
2017-08-31
Support Year
16
Fiscal Year
2016
Total Cost
$313,379
Indirect Cost
$12,513
Name
Lawrence Berkeley National Laboratory
Department
Type
DUNS #
078576738
City
Berkeley
State
CA
Country
United States
Zip Code
94720
Sung, Patrick (2018) Introduction to the Thematic Minireview Series: DNA double-strand break repair and pathway choice. J Biol Chem 293:10500-10501
Shen, Jianfeng; Ju, Zhenlin; Zhao, Wei et al. (2018) ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat Med 24:556-562
Sengupta, Shiladitya; Yang, Chunying; Hegde, Muralidhar L et al. (2018) Acetylation of oxidized base repair-initiating NEIL1 DNA glycosylase required for chromatin-bound repair complex formation in the human genome increases cellular resistance to oxidative stress. DNA Repair (Amst) 66-67:1-10
Mu, Hong; Geacintov, Nicholas E; Broyde, Suse et al. (2018) Molecular basis for damage recognition and verification by XPC-RAD23B and TFIIH in nucleotide excision repair. DNA Repair (Amst) :
Chavez, Diana A; Greer, Briana H; Eichman, Brandt F (2018) The HIRAN domain of helicase-like transcription factor positions the DNA translocase motor to drive efficient DNA fork regression. J Biol Chem 293:8484-8494
Wang, Jing L; Duboc, Camille; Wu, Qian et al. (2018) Dissection of DNA double-strand-break repair using novel single-molecule forceps. Nat Struct Mol Biol 25:482-487
Crickard, J Brooks; Kaniecki, Kyle; Kwon, Youngho et al. (2018) Meiosis-specific recombinase Dmc1 is a potent inhibitor of the Srs2 antirecombinase. Proc Natl Acad Sci U S A 115:E10041-E10048
Syed, Aleem; Tainer, John A (2018) The MRE11-RAD50-NBS1 Complex Conducts the Orchestration of Damage Signaling and Outcomes to Stress in DNA Replication and Repair. Annu Rev Biochem 87:263-294
Howes, Timothy R L; Sallmyr, Annahita; Brooks, Rhys et al. (2018) Erratum to ""Structure-activity relationships among DNA ligase inhibitors; characterization of a selective uncompetitive DNA ligase I inhibitor"" [DNA Repair 60C (2017) 29-39]. DNA Repair (Amst) 61:99
Bhattacharyya, Sudipta; Soniat, Michael M; Walker, David et al. (2018) Phage Mu Gam protein promotes NHEJ in concert with Escherichia coli ligase. Proc Natl Acad Sci U S A 115:E11614-E11622

Showing the most recent 10 out of 484 publications