This program projects focuses on the treatment of cancer using genetically modified T cells. Three of the four projects will undertake clinical trials during the course of the studies. These rely on the availability of a GMP manufacturing facility for the preparation of the cellular therapy products. The GMP Facilities at the Center for Cell and Gene Therapy have been in operation for more than 6 years. The Cell Processing Facility has considerable experience in the preparation of a wide variety of cellular products, including all that would be required for the projects in this application. It has been designated one of three National Somatic Cell Therapy Processing Facilities by the NHLBI under its Production Assistance for Cell Therapy Contract Program. It consists of more than 6,000 square feet of HEPA filtered, Class 10,000 space, divided into 8 cell preparation laboratories, a low temperature storage area, a Class 1,000 cell sorting and analysis laboratory, a large equipment area and a central supply facility. The Facility is well equipped to operate under GMP conditions, with extensive documentation systems, barcoding, environmental monitoring and quality assurance, control and improvement programs. Additional components of the Core are the Quality Control Laboratory, which performs in-house testing of cellular products and vectors, and is responsible for routine monitoring of Good Manufacturing Practices;and the Quality Assurance Group that ensures compliance with GMP and provides independent overview of all aspects of manufacturing and release. The GMP staff also have extensive regulatory experience and will liaise with the projects and Core A to facilitate translation of laboratory studies into feasible clinical trials. In summary, the Cell Processing Core is a vital component of the Program Project that will provide services that are essential to the implementation of the clinical studies in Projects 1, 3 and 4.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA094237-09
Application #
8217344
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2011-02-01
Budget End
2012-01-31
Support Year
9
Fiscal Year
2011
Total Cost
$312,080
Indirect Cost
Name
Baylor College of Medicine
Department
Type
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Mohammed, Somala; Sukumaran, Sujita; Bajgain, Pradip et al. (2017) Improving Chimeric Antigen Receptor-Modified T Cell Function by Reversing the Immunosuppressive Tumor Microenvironment of Pancreatic Cancer. Mol Ther 25:249-258
Heczey, Andras; Louis, Chrystal U; Savoldo, Barbara et al. (2017) CAR T Cells Administered in Combination with Lymphodepletion and PD-1 Inhibition to Patients with Neuroblastoma. Mol Ther 25:2214-2224
Rouce, Rayne H; Sharma, Sandhya; Huynh, Mai et al. (2017) Recent advances in T-cell immunotherapy for haematological malignancies. Br J Haematol 176:688-704
Tanaka, Miyuki; Tashiro, Haruko; Omer, Bilal et al. (2017) Vaccination Targeting Native Receptors to Enhance the Function and Proliferation of Chimeric Antigen Receptor (CAR)-Modified T Cells. Clin Cancer Res 23:3499-3509
Schmueck-Henneresse, Michael; Omer, Bilal; Shum, Thomas et al. (2017) Comprehensive Approach for Identifying the T Cell Subset Origin of CD3 and CD28 Antibody-Activated Chimeric Antigen Receptor-Modified T Cells. J Immunol 199:348-362
Shum, Thomas; Omer, Bilal; Tashiro, Haruko et al. (2017) Constitutive Signaling from an Engineered IL7 Receptor Promotes Durable Tumor Elimination by Tumor-Redirected T Cells. Cancer Discov 7:1238-1247
Tashiro, Haruko; Sauer, Tim; Shum, Thomas et al. (2017) Treatment of Acute Myeloid Leukemia with T Cells Expressing Chimeric Antigen Receptors Directed to C-type Lectin-like Molecule 1. Mol Ther 25:2202-2213
Gomes-Silva, Diogo; Mukherjee, Malini; Srinivasan, Madhuwanti et al. (2017) Tonic 4-1BB Costimulation in Chimeric Antigen Receptors Impedes T Cell Survival and Is Vector-Dependent. Cell Rep 21:17-26
Szoor, Arpad; Vaidya, Abishek; Velasquez, Mireya Paulina et al. (2017) T Cell-Activating Mesenchymal Stem Cells as a Biotherapeutic for HCC. Mol Ther Oncolytics 6:69-79
Yagyu, Shigeki; Hoyos, Valentina; Del Bufalo, Francesca et al. (2016) Multiple mechanisms determine the sensitivity of human-induced pluripotent stem cells to the inducible caspase-9 safety switch. Mol Ther Methods Clin Dev 3:16003

Showing the most recent 10 out of 201 publications