This is a competing renewal of a highly succesful project concerning the role of the Hh pathway in medulloblastoma. Previously, we obtained dramatic results using a small molecule antagonist of the Hh pathway (HhAntag) in a spontaneous mouse model of medulloblastoma. However, recently, we also found that HhAntag treatment of young mice causes severe defects in bone development. We will now investigate the mechanism of action of HhAntag in tumor cells, as well as in developing bone, to optimize strategies for delivering this potentially revolutionary treatment for a subset of human medulloblastoma. We will also establish new pediatric brain tumor models to investigate the mechanism of action of HhAntag in human medulloblastoma as well as in a broader spectrum of pediatric brain tumors.
In Aim 1, we will address the mechanism responsible for the anti-tumor effect of HhAntag as well as its effect on bone development. We will investigate alternative delivery methods and different structural classes of inhibitors in an effort to minimize the deletrious effects on developing bone. We will also screen for other inhibitors or targets that may be more selective for brain tumors.
In Aim 2, we propose to investigate the role of the microenvironment in maintaining Hh pathway activity in vitro. We will utilize stem cell culture techniques, coculture with stromal support cells, and transplantation in an attempt to maintain pathway activity in mouse medulloblastoma cells. Once established, we will use these conditions to propagate human medulloblastoma carrying PTCH1 mutations so that we can test their response to HhAntag.
In Aim 3, we will investigate the role of the Hh pathway in pediatric brain tumors lacking known Hh pathway mutations. Tumors will be collected and characterized by genomic profiling, and used to establish new culture and transplantation models. We will investigate the effect of HhAntag on tumors and stromal support cells in a range of tumors, including Atypical Teratoid/Rhabdoid Tumors and Choroid Plexus Carcinoma.

Public Health Relevance

Cancer treatments are usually developed to treat adult disease but childrens brain tumors are very different. We are developing new approaches specifically targeted to the unique aspects of pediatric disease. Our previous work gave very promising leads that we will now follow so that we can deliver the new therapy while avoiding side effects.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA096832-10
Application #
8459558
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
10
Fiscal Year
2013
Total Cost
$342,151
Indirect Cost
$115,108
Name
St. Jude Children's Research Hospital
Department
Type
DUNS #
067717892
City
Memphis
State
TN
Country
United States
Zip Code
38105
Pajtler, Kristian W; Wen, Ji; Sill, Martin et al. (2018) Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathol 136:211-226
Teitz, Tal; Fang, Jie; Goktug, Asli N et al. (2018) CDK2 inhibitors as candidate therapeutics for cisplatin- and noise-induced hearing loss. J Exp Med 215:1187-1203
Tsang, Derek S; Burghen, Elizabeth; Klimo Jr., Paul et al. (2018) Outcomes After Reirradiation for Recurrent Pediatric Intracranial Ependymoma. Int J Radiat Oncol Biol Phys 100:507-515
Shadrick, William R; Slavish, Peter J; Chai, Sergio C et al. (2018) Exploiting a water network to achieve enthalpy-driven, bromodomain-selective BET inhibitors. Bioorg Med Chem 26:25-36
Roussel, Martine F; Stripay, Jennifer L (2018) Epigenetic Drivers in Pediatric Medulloblastoma. Cerebellum 17:28-36
Waszak, Sebastian M; Northcott, Paul A; Buchhalter, Ivo et al. (2018) Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol 19:785-798
El Nagar, Salsabiel; Zindy, Frederique; Moens, Charlotte et al. (2018) A new genetically engineered mouse model of choroid plexus carcinoma. Biochem Biophys Res Commun 496:568-574
Nimmervoll, Birgit V; Boulos, Nidal; Bianski, Brandon et al. (2018) Establishing a Preclinical Multidisciplinary Board for Brain Tumors. Clin Cancer Res 24:1654-1666
Vo, BaoHan T; Kwon, Jin Ah; Li, Chunliang et al. (2018) Mouse medulloblastoma driven by CRISPR activation of cellular Myc. Sci Rep 8:8733
ElInati, Elias; Russell, Helen R; Ojarikre, Obah A et al. (2017) DNA damage response protein TOPBP1 regulates X chromosome silencing in the mammalian germ line. Proc Natl Acad Sci U S A 114:12536-12541

Showing the most recent 10 out of 208 publications