Breast cancer is a heterogeneous disease with diverse outcomes and response to therapy. Basal-like breast cancers (BBC), which account for 15-20% of all breast cancer, share a distinct pattern of gene expression that includes elevated basal cytokeratins and DNA replication factors. On the other hand, basal-like breast cancers are heterogeneous among themselves with regard to metastatic potential and genetic alterations. Therefore, the driving forces for the growth and poor prognosis of BBC must be identified before therapeutic strategies with a high chance of success can be developed. The long-term objective of this program is to define the oncogene and tumor suppressor pathways at work in different forms of BBC to better predict their clinical behavior and to develop approaches for attacking these tumors. We and others have established that, as a class, BBC frequently deregulate MYC, p53, PTEN, BRCA1, and we have preliminary data showing the same for HAUSP. How or when these alterations cooperate in any specific BBC development is not understood. Each of the projects in the newly revised application is focused on defining the pathways that cause basal-like cancer and then discerning the basis for their contribution to the tumor phenotype. Project 1 will seek to understand the role of PTEN and other PI3K pathway regulators in BBC. Project 2 will determine the function of HAUSP in the regulation of PTEN ubiquitination and BBC tumor suppression. Projects will focus on the ubiquitin-ligase function of BRCA1 in hereditary BBC tumor suppression and the development of a more accurate model of the disease. Project 4 will study the ability of MYC to induce DNA replication stress and mechanisms of escape to produce DNA replication through the inactivation of tumor suppressors PTEN, p53 and BRCA1. The projects will be supported by cores for administration/analysis and breast pathology. The program relies on the integration of different expertise in the areas of molecular pathology, mammary cell engineering, biochemistry, genetics, systems biology, bioinformatics, biostatistics, and cell function analysis. Ultimately, we hope to better understand the mechanisms through which the network of altered pathways in basal-like breast cancer drives tumor growth in order to better predict tumor phenotype, i.e., metastasis, and develop strategies for therapy.

Public Health Relevance

There is currently no available targeted therapy for basal-like breast cancer. This application will define pathways that are altered in basal-like breast cancer and determine their contribution to tumor pathogenesis. Understanding the network of pathways altered in basal-like breast cancer will lead to novel approaches for the stratification and treatment of this disease.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA097403-10
Application #
8530971
Study Section
Special Emphasis Panel (ZCA1-RPRB-O (J1))
Program Officer
Mietz, Judy
Project Start
2002-07-01
Project End
2014-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
10
Fiscal Year
2013
Total Cost
$1,090,942
Indirect Cost
$403,545
Name
Columbia University (N.Y.)
Department
Pathology
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Hopkins, Benjamin D; Hodakoski, Cindy; Barrows, Douglas et al. (2014) PTEN function: the long and the short of it. Trends Biochem Sci 39:183-90
Shakya, Reena; Gonda, Tamas; Quante, Michael et al. (2013) Hypomethylating therapy in an aggressive stroma-rich model of pancreatic carcinoma. Cancer Res 73:885-96
Tavana, Omid; Gu, Wei (2013) The Hunger Games: p53 regulates metabolism upon serine starvation. Cell Metab 17:159-61
Pires, Maira M; Hopkins, Benjamin D; Saal, Lao H et al. (2013) Alterations of EGFR, p53 and PTEN that mimic changes found in basal-like breast cancer promote transformation of human mammary epithelial cells. Cancer Biol Ther 14:246-53
Peterson, Shaun E; Li, Yinyin; Wu-Baer, Foon et al. (2013) Activation of DSB processing requires phosphorylation of CtIP by ATR. Mol Cell 49:657-67
Tavana, Omid; Gu, Wei (2013) p53 and DNA methylation suppress the TRAIN to cell death. Cell Cycle 12:9-10
Keniry, Megan; Pires, Maira M; Mense, Sarah et al. (2013) Survival factor NFIL3 restricts FOXO-induced gene expression in cancer. Genes Dev 27:916-27
Gupta, Arun; Hunt, Clayton R; Pandita, Raj K et al. (2013) T-cell-specific deletion of Mof blocks their differentiation and results in genomic instability in mice. Mutagenesis 28:263-70
Baer, Richard (2013) Luring BRCA1 to the scene of the crime. Cancer Cell 23:565-7
Lee, James T; Shan, Jing; Zhong, Jiayun et al. (2013) RFP-mediated ubiquitination of PTEN modulates its effect on AKT activation. Cell Res 23:552-64

Showing the most recent 10 out of 50 publications