The Molecular Biology/Gene Expression Core Facility will provide critical services to support the scientific goals of this Program Project: 1) Reagent Bank- contains specific plasmids, expression constructs, reporter constructs, antibodies, RNA samples, and retroviral/adenoviral/lentiviral vectors of relevance to the study of esophageal carcinogenesis. As a result, these reagents have been organized and centralized. In addition, we will continue to store newly available reagents;2) Image Analysis and Gene Expression Quantification- multiple instruments are available, such as (but not limited to) Phosphorimaging, Gel and Chemidoc, Agilent Bioanalyzer and Odyssey Infrared Protein Imaging System, real-time quantitative PCR, and transcriptional analysis for Dynex and Orion Luminometers;3) Gene Profiling Services (subsidized) with gene microarrays (Affymetrix platform) through the Penn microarray facility (Dr. Baldwin) and the Penn bioinformatics facility (Dr. Tobias integrated within the Biostatistics Core);4) Human Tissue Bank with an esophageal tissue repository and annotated clinical tissue component;5) Esophageal Cell Line Bank (murine and human) with primary, immortalized, transformed and newly genetically engineered esophageal cell lines for use by the Projects;6) Esophageal database repository (web-based) for esophageal tissues, cell lines (nontransformed and transformed, organotypic cultures, microarrays, and common, shared reagents/equipment (from Cores C and D). The Molecular Biology/Gene Expression Core provides quality assurance, quality control, cost- effectiveness, timeliness and efficiency in its services. All components that pertain to human tissues are IRB approved with patient informed consent and HIPAA compliance, and carry patient de-identifiers. This Core works closely with all the other Cores, especially the Morphology Core C to avoid duplication and furnish coordinated approaches for the Projects. The Projects benefit tremendously from this Core in advancing their interrelated hypotheses and Specific Aims. In addition, this Core is dynamic in responding to evolving P01 needs, anticipating future P01 directions, and integrating emerging technologies.

Public Health Relevance

(Seeinstructions):

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA098101-10
Application #
8527497
Study Section
Special Emphasis Panel (ZCA1-RPRB-O)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
10
Fiscal Year
2013
Total Cost
$108,832
Indirect Cost
$32,415
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Tetreault, Marie-Pier; Weinblatt, Daniel; Shaverdashvili, Khvaramze et al. (2016) KLF4 transcriptionally activates non-canonical WNT5A to control epithelial stratification. Sci Rep 6:26130
Yoshida, Akihiro; Lee, Eric K; Diehl, J Alan (2016) Induction of Therapeutic Senescence in Vemurafenib-Resistant Melanoma by Extended Inhibition of CDK4/6. Cancer Res 76:2990-3002
Kong, Jianping; Whelan, Kelly A; Laczkó, Dorottya et al. (2016) Autophagy levels are elevated in barrett's esophagus and promote cell survival from acid and oxidative stress. Mol Carcinog 55:1526-1541
Dotto, G Paolo; Rustgi, Anil K (2016) Squamous Cell Cancers: A Unified Perspective on Biology and Genetics. Cancer Cell 29:622-37
Qie, Shuo; Diehl, J Alan (2016) Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med (Berl) 94:1313-1326
Tétreault, Marie-Pier; Weinblatt, Daniel; Ciolino, Jody Dyan et al. (2016) Esophageal Expression of Active IκB Kinase-β in Mice Up-Regulates Tumor Necrosis Factor and Granulocyte-Macrophage Colony-Stimulating Factor, Promoting Inflammation and Angiogenesis. Gastroenterology 150:1609-1619.e11
Whelan, Kelly A; Merves, Jamie F; Giroux, Veronique et al. (2016) Autophagy mediates epithelial cytoprotection in eosinophilic oesophagitis. Gut :
Lin, E W; Karakasheva, T A; Hicks, P D et al. (2016) The tumor microenvironment in esophageal cancer. Oncogene 35:5337-5349
Shearin, Abigail L; Monks, Bobby R; Seale, Patrick et al. (2016) Lack of AKT in adipocytes causes severe lipodystrophy. Mol Metab 5:472-9
Facompre, Nicole D; Harmeyer, Kayla M; Sole, Xavier et al. (2016) JARID1B Enables Transit between Distinct States of the Stem-like Cell Population in Oral Cancers. Cancer Res 76:5538-49

Showing the most recent 10 out of 139 publications