PROJECT 3 ABSTRACT Esophageal cancer is a common and deadly disease with inadequate therapies. Systemic therapy remains reliant upon empiric chemotherapy, given alone in the palliative setting and in conjunction with radiation for adjuvant care. The convergence of our rapidly expanding knowledge of the cancer genome and the development of a myriad of targeted agents has created a new and unique opportunity to advance rational, biomarker-driven therapies for esophageal cancer. Our genomic studies of esophageal cancers have identified two dominant classes of targets: highly recurrent amplifications targeting receptor tyrosine kinases, most frequently EGFR and ERBB2 (Her2), and amplified modulators of the cell cycle, Cyclin D1, Cyclin E1 and CDK6. Despite strong genomic rationale for these targets and the available and emerging inhibitors, we lack pre-clinical data to guide the development strategies to exploit these targets. Therefore, we propose to develop strategies to target esophageal cancers harboring targetable genomic alterations of receptor tyrosine kinases and of cell cycle mediators utilizing genomically-characterized model systems in in vitro and in vivo testing of therapeutic agents. We will tests hypotheses regarding means to target tumors, both with single targeted therapies and with rational combinations. Throughout this proposal, we integrate efforts with the other projects in this Project Grant and make extensive use of core resources through this Project and evaluate targeted strategies that for both esophageal squamous cell carcinoma and esophageal adenocarcinoma.
In Aim 1, we propose to evaluate the cell cycle kinase CDK2 as a therapeutic target in esophageal carcinomas by evaluating this target using genetic and pharmacologic tools in esophageal cancer models with genomic lesions that make them more likely dependent upon CDK2, amplifications of genes encoding cyclin D1 and cyclin E1.
In Aim 2, we evaluate distinct classes of small molecule and antibody tyrosine kinase inhibitors in esophageal cancer model systems with genomic alterations leading to oncogenic activation of ERBB family kinases EGFR and ERBB2. Furthermore, in Aim 2 we also test the ability to augment effects of ERBB-directed therapy in esophageal cancer models by combinations with inhibitors of either the MAPK or PI3-K pathway. Finally, in Aim 3 we evaluate the phenomena we have observed that esophageal cancers often harbor genomic aberrations impacting both cell cycle mediators and ERBB-family kinases in the same tumor, suggesting that combining inhibitors of these two sets of targets may be efficacious for these tumors. We therefore propose to characterize the patterns of co-occurrence of these targets in the genomes of these cancers and their co-expression in a large panel of tissue samples. Additionally, we will utilize the example of esophageal cancer models with co-amplification of both EGFR and Cyclin D1 to systematically evaluate distinct methods of combing inhibitors to these pathways. Together, these three aims are designed to pursue specific hypotheses that will allow us to much more rapidly develop new more effective therapeutic strategies for patients with these deadly diseases.

Public Health Relevance

PROJECT 3 NARRATIVE Esophageal cancer is a deadly disease for which new, more effective therapies are desperately needed. Building upon emerging results from the study of biology of esophageal cancer, this proposal aims to develop more effective therapeutic strategies for this disease by systematically testing new drugs that target the key genes that drive esophageal cancers.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-O (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
United States
Zip Code
Kagawa, S; Natsuizaka, M; Whelan, K A et al. (2015) Cellular senescence checkpoint function determines differential Notch1-dependent oncogenic and tumor-suppressor activities. Oncogene 34:2347-59
Natsuizaka, Mitsuteru; Kinugasa, Hideaki; Kagawa, Shingo et al. (2014) IGFBP3 promotes esophageal cancer growth by suppressing oxidative stress in hypoxic tumor microenvironment. Am J Cancer Res 4:29-41
Hong, Yong Sang; Kim, Jihun; Pectasides, Eirini et al. (2014) Src mutation induces acquired lapatinib resistance in ERBB2-amplified human gastroesophageal adenocarcinoma models. PLoS One 9:e109440
Habibollahi, Peiman; Waldron, Todd; Heidari, Pedram et al. (2014) Fluorescent nanoparticle imaging allows noninvasive evaluation of immune cell modulation in esophageal dysplasia. Mol Imaging 13:1-11
Hartman, Kira G; Bortner Jr, James D; Falk, Gary W et al. (2014) Modeling human gastrointestinal inflammatory diseases using microphysiological culture systems. Exp Biol Med (Maywood) 239:1108-23
Xu, Chunxiao; Fillmore, Christine M; Koyama, Shohei et al. (2014) Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression. Cancer Cell 25:590-604
Watanabe, Hideo; Ma, Qiuping; Peng, Shouyong et al. (2014) SOX2 and p63 colocalize at genetic loci in squamous cell carcinomas. J Clin Invest 124:1636-45
Wong, Gabrielle S; Habibollahi, Peiman; Heidari, Pedram et al. (2013) Optical imaging of periostin enables early endoscopic detection and characterization of esophageal cancer in mice. Gastroenterology 144:294-7
Desai, Brijal M; Villanueva, Jessie; Nguyen, Thierry-Thien K et al. (2013) The anti-melanoma activity of dinaciclib, a cyclin-dependent kinase inhibitor, is dependent on p53 signaling. PLoS One 8:e59588
Kadaba, Raghu; Birke, Hanna; Wang, Jun et al. (2013) Imbalance of desmoplastic stromal cell numbers drives aggressive cancer processes. J Pathol 230:107-17

Showing the most recent 10 out of 91 publications