Our hypothesis is that defects in the enzyme families we study result in aberrant base excision and homology-directed repair which is an engine driving human carcinogenesis. The majority of endogenous and radiation-induced DNA lesions are removed by the base excision repair (BER) machinery and when this pathway fails, the resulting substrates are channeled into homology-directed repair. The overall goals of this Program Project are to understand at the atomic level how three families of DNA repair enzymes the HhH-GPD superfamily of DNA glycosylases, the Fpg/Nei family of DNA glycosylases and the RecA-RAD51 family of recombinases, recognize and process their substrates and how germ line and tumor associated variants of these proteins influence cancer susceptibility and carcinogenesis, respectively. In order to translate our basic science more directly to cancer, we now propose to use our expertise and tested methodologies to examine human genetic variation. Based on our discoveries of novel substrate specificities and biochemical activities, as well as our strengths in fundamental biochemistry and structural biology, our program for the renewal will be informed and driven by the identification and characterization of germ line and tumor-associated variants of human base excision repair and homology-directed repair enzymes. Core A will identify human germ line and somatic DNA sequence variants of the oxidative DNA glycosylases and RAD51 based on structure and phylogeny. Project 1 will demonstrate whether these repair variants Induce cellular transformation, are mutagenic in mouse cells and whether they influence the cellular response to ionizing radiation and chemotherapeutic agents. Project 2 will examine the biochemical properties of the oxidative glycosylase variants and solve structures of wild type enzymes with substrates and where appropriate the glycosylase variants. Project 3 will examine the biochemical and where appropriate, structural characteristics of RAD51 variants as well as study the mechanisms of RAD51 filament formation. Project 4 will reconstitute the base excision repair pathway in the context of nucleosomes with wild type and variant glycosylases and examine the effect of histone primary sequence variants on chromatin accessibility during BER. Projects 1-4 will be serviced by the Protein and Biochemistry Core B which will supply purified proteins and perform high throughput analysis of the proteins. In addition to bioinformatics for all projects, Core A will also perform kinetics analysis for Projects 2-4. Core C will provide the administrative underpinnings for the project.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-0 (M1))
Program Officer
Pelroy, Richard
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Vermont & St Agric College
Schools of Medicine
United States
Zip Code
Lee, Andrea J; Wallace, Susan S (2016) Visualizing the Search for Radiation-damaged DNA Bases in Real Time. Radiat Phys Chem Oxf Engl 1993 128:126-133
Prakash, Aishwarya; Cao, Vy Bao; Doublié, Sylvie (2016) Phosphorylation Sites Identified in the NEIL1 DNA Glycosylase Are Potential Targets for the JNK1 Kinase. PLoS One 11:e0157860
Cannan, Wendy J; Pederson, David S (2016) Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin. J Cell Physiol 231:3-14
Marsden, Carolyn G; Jensen, Ryan B; Zagelbaum, Jennifer et al. (2016) The Tumor-Associated Variant RAD51 G151D Induces a Hyper-Recombination Phenotype. PLoS Genet 12:e1006208
Silva, Michelle C; Morrical, Milagros D; Bryan, Katie E et al. (2016) RAD51 variant proteins from human lung and kidney tumors exhibit DNA strand exchange defects. DNA Repair (Amst) 42:44-55
Zhou, Jia; Fleming, Aaron M; Averill, April M et al. (2015) The NEIL glycosylases remove oxidized guanine lesions from telomeric and promoter quadruplex DNA structures. Nucleic Acids Res 43:4039-54
Chen, Jianhong; Morrical, Milagros D; Donigan, Katherine A et al. (2015) Tumor-associated mutations in a conserved structural motif alter physical and biochemical properties of human RAD51 recombinase. Nucleic Acids Res 43:1098-111
Morrical, Scott W (2015) DNA-pairing and annealing processes in homologous recombination and homology-directed repair. Cold Spring Harb Perspect Biol 7:a016444
Prakash, Aishwarya; Doublié, Sylvie (2015) Base Excision Repair in the Mitochondria. J Cell Biochem 116:1490-9
Prakash, Aishwarya; Carroll, Brittany L; Sweasy, Joann B et al. (2014) Genome and cancer single nucleotide polymorphisms of the human NEIL1 DNA glycosylase: activity, structure, and the effect of editing. DNA Repair (Amst) 14:17-26

Showing the most recent 10 out of 55 publications