Rad51 protein is the eukaryotic representative of the RecA/Rad51 fannlly of DNA strand transferase enzymes. Homologous DNA strand exchanges catalyzed by RadSI are critical for Homology-Dlrected DNA Repair (HDR) and therefore for genome stability. To promote HDR, RadSI must first assemble onto single stranded DNA In the form of a presynaptic filament. Filament assembly allosterically activates RadSI to catalyze ATP hydrolysis, to search for homology in a sister chromosome, and to perform DNA strand exchange reactions. There Is compelling evidence that defects in the assembly and activity of RadSI presynaptic filaments are linked to human cancer. The overall goal of Project 3 Is to understand how specific changes in the structure, function, and molecular interactions of RadSI can lead to genomic instability and cancer.
The SPECIFIC AIMS of Project 3 are: (1) To test the hypothesis that key amino acid residues at the filament interface and in the ATPase active site of RadSI control the allosteric transitions that couple the ATPase catalytic cycle to DNA strand exchange. Using yeast RadSI as a model, the catalytic and allosteric mechanisms of RadSI will be probed using a combination of site-directed mutagenesis, biochemical and biophysical analyses, and structural biology methods. (2) To test the hypothesis that tumor-derived variants of human hRADSI protein have altered biochemical and/or regulatory properties. hRADSI variants identified in Project 1 will be characterized biochemically alongside wild-type hRADSI to identify any changes in DNA binding or catalytic properties, or in key protein-protein interactions. (3) To test the hypothesis that interactions between hRADSI and DNA polymerase beta (Pol-beta) help recruit hRADSI onto ssDNA generated as a result of abortive base excision repair (BER). hRADSI:Pol-beta interactions will be characterized biochemically and disrupted by mutagenesis to assess their importance for DNA repair functions. Interesting mutants from Aims 2-3 will be exported to Projects 1 and 4 for in vivo and chromatin studies. This project will provide rigorous models for the structure, function, and assembly of RadSI presynaptic filaments, and for potential cross-talk between HDR and BER pathways, in normal vs, tumor cells, which will be useful for predicting cancer susceptibility and for developing new cancer treatments.

Public Health Relevance

The human RAD51 protein plays critical roles in DNA repair pathways that protect cells from mutations and from cancer. In this project we will isolate variant forms of RADSI that are found in human cancer cells, and we will study how these RAD51 variants differ from normal RAD51, Information from this project will help us to design better diagnosis and treatment strategies for cancer.

Agency
National Institute of Health (NIH)
Type
Research Program Projects (P01)
Project #
5P01CA098993-10
Application #
8725060
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
10
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Vermont & St Agric College
Department
Type
DUNS #
City
Burlington
State
VT
Country
United States
Zip Code
05405
Lee, Andrea J; Wallace, Susan S (2016) Visualizing the Search for Radiation-damaged DNA Bases in Real Time. Radiat Phys Chem Oxf Engl 1993 128:126-133
Prakash, Aishwarya; Cao, Vy Bao; Doublié, Sylvie (2016) Phosphorylation Sites Identified in the NEIL1 DNA Glycosylase Are Potential Targets for the JNK1 Kinase. PLoS One 11:e0157860
Cannan, Wendy J; Pederson, David S (2016) Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin. J Cell Physiol 231:3-14
Marsden, Carolyn G; Jensen, Ryan B; Zagelbaum, Jennifer et al. (2016) The Tumor-Associated Variant RAD51 G151D Induces a Hyper-Recombination Phenotype. PLoS Genet 12:e1006208
Silva, Michelle C; Morrical, Milagros D; Bryan, Katie E et al. (2016) RAD51 variant proteins from human lung and kidney tumors exhibit DNA strand exchange defects. DNA Repair (Amst) 42:44-55
Zhou, Jia; Fleming, Aaron M; Averill, April M et al. (2015) The NEIL glycosylases remove oxidized guanine lesions from telomeric and promoter quadruplex DNA structures. Nucleic Acids Res 43:4039-54
Chen, Jianhong; Morrical, Milagros D; Donigan, Katherine A et al. (2015) Tumor-associated mutations in a conserved structural motif alter physical and biochemical properties of human RAD51 recombinase. Nucleic Acids Res 43:1098-111
Morrical, Scott W (2015) DNA-pairing and annealing processes in homologous recombination and homology-directed repair. Cold Spring Harb Perspect Biol 7:a016444
Prakash, Aishwarya; Doublié, Sylvie (2015) Base Excision Repair in the Mitochondria. J Cell Biochem 116:1490-9
Prakash, Aishwarya; Carroll, Brittany L; Sweasy, Joann B et al. (2014) Genome and cancer single nucleotide polymorphisms of the human NEIL1 DNA glycosylase: activity, structure, and the effect of editing. DNA Repair (Amst) 14:17-26

Showing the most recent 10 out of 55 publications