The Administrative Core of the Program Project, Structure and Function of DNA Repair Enzymes and Cancer, will be responsible for coordinating all of the administrative aspects of the program and for facilitating interactions among the Project and Core Directors, Senior Investigators, and their laboratory members. The overall goal of Core C is to ensure the successful conduct of the research proposed in this application. The management of the DNA Repair Program will be coordinated by the Principal Investigator/Administrative Core Director, Dr. Susan Wallace, with an Executive Committee comprised of Drs. Bond, Doubli, Pederson and Sweasy. Specifically, the aims of the Core are: (1) To provide administrative support for the Projects and Cores A and B, (2) To provide fiscal oversight for the Program, and (3) To monitor the scientific program. The services provided by Core C are essential for each Project and for the success of the Program Project as a whole.

Public Health Relevance

Core C provides administrative support to all of the projects and other cores in this program that studies how mutations in DNA repair genes in the normal population and in tumors contribute to altered DNA repair capacity. This Program Project will both contribute to our understanding of basic cancer biology and provide the basis for new approaches to cancer therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA098993-11A1
Application #
9209394
Study Section
Special Emphasis Panel (ZCA1-RPRB-F (O1))
Project Start
2004-09-03
Project End
2022-04-30
Budget Start
2016-09-01
Budget End
2017-08-31
Support Year
11
Fiscal Year
2017
Total Cost
$89,039
Indirect Cost
$31,871
Name
University of Vermont & St Agric College
Department
Type
Domestic Higher Education
DUNS #
066811191
City
Burlington
State
VT
Country
United States
Zip Code
05405
Lee, Andrea J; Wallace, Susan S (2016) Visualizing the Search for Radiation-damaged DNA Bases in Real Time. Radiat Phys Chem Oxf Engl 1993 128:126-133
Prakash, Aishwarya; Cao, Vy Bao; Doublié, Sylvie (2016) Phosphorylation Sites Identified in the NEIL1 DNA Glycosylase Are Potential Targets for the JNK1 Kinase. PLoS One 11:e0157860
Cannan, Wendy J; Pederson, David S (2016) Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin. J Cell Physiol 231:3-14
Marsden, Carolyn G; Jensen, Ryan B; Zagelbaum, Jennifer et al. (2016) The Tumor-Associated Variant RAD51 G151D Induces a Hyper-Recombination Phenotype. PLoS Genet 12:e1006208
Silva, Michelle C; Morrical, Milagros D; Bryan, Katie E et al. (2016) RAD51 variant proteins from human lung and kidney tumors exhibit DNA strand exchange defects. DNA Repair (Amst) 42:44-55
Zhou, Jia; Fleming, Aaron M; Averill, April M et al. (2015) The NEIL glycosylases remove oxidized guanine lesions from telomeric and promoter quadruplex DNA structures. Nucleic Acids Res 43:4039-54
Chen, Jianhong; Morrical, Milagros D; Donigan, Katherine A et al. (2015) Tumor-associated mutations in a conserved structural motif alter physical and biochemical properties of human RAD51 recombinase. Nucleic Acids Res 43:1098-111
Morrical, Scott W (2015) DNA-pairing and annealing processes in homologous recombination and homology-directed repair. Cold Spring Harb Perspect Biol 7:a016444
Prakash, Aishwarya; Doublié, Sylvie (2015) Base Excision Repair in the Mitochondria. J Cell Biochem 116:1490-9
Prakash, Aishwarya; Carroll, Brittany L; Sweasy, Joann B et al. (2014) Genome and cancer single nucleotide polymorphisms of the human NEIL1 DNA glycosylase: activity, structure, and the effect of editing. DNA Repair (Amst) 14:17-26

Showing the most recent 10 out of 55 publications