The Administrative Core of the Program Project, Structure and Function of DNA Repair Enzymes and Cancer, will be responsible for coordinating all of the administrative aspects of the program and for facilitating interactions among the Project and Core Directors, Senior Investigators, and their laboratory members. The overall goal of Core C is to ensure the successful conduct of the research proposed in this application. The management of the DNA Repair Program will be coordinated by the Principal Investigator/Administrative Core Director, Dr. Susan Wallace, with an Executive Committee comprised of Drs. Bond, Doubli, Pederson and Sweasy. Specifically, the aims of the Core are: (1) To provide administrative support for the Projects and Cores A and B, (2) To provide fiscal oversight for the Program, and (3) To monitor the scientific program. The services provided by Core C are essential for each Project and for the success of the Program Project as a whole.

Public Health Relevance

Core C provides administrative support to all of the projects and other cores in this program that studies how mutations in DNA repair genes in the normal population and in tumors contribute to altered DNA repair capacity. This Program Project will both contribute to our understanding of basic cancer biology and provide the basis for new approaches to cancer therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA098993-11A1
Application #
9209394
Study Section
Special Emphasis Panel (ZCA1-RPRB-F (O1))
Project Start
2004-09-03
Project End
2022-04-30
Budget Start
2016-09-01
Budget End
2017-08-31
Support Year
11
Fiscal Year
2017
Total Cost
$89,039
Indirect Cost
$31,871
Name
University of Vermont & St Agric College
Department
Type
Domestic Higher Education
DUNS #
066811191
City
Burlington
State
VT
Country
United States
Zip Code
05405
Galick, Heather A; Marsden, Carolyn G; Kathe, Scott et al. (2017) The NEIL1 G83D germline DNA glycosylase variant induces genomic instability and cellular transformation. Oncotarget 8:85883-85895
Silva, Michelle C; Bryan, Katie E; Morrical, Milagros D et al. (2017) Defects in recombination activity caused by somatic and germline mutations in the multimerization/BRCA2 binding region of human RAD51 protein. DNA Repair (Amst) 60:64-76
Robey-Bond, Susan M; Benson, Meredith A; Barrantes-Reynolds, Ramiro et al. (2017) Probing the activity of NTHL1 orthologs by targeting conserved amino acid residues. DNA Repair (Amst) 53:43-51
Maher, R L; Marsden, C G; Averill, A M et al. (2017) Human cells contain a factor that facilitates the DNA glycosylase-mediated excision of oxidized bases from occluded sites in nucleosomes. DNA Repair (Amst) 57:91-97
Cannan, Wendy J; Rashid, Ishtiaque; Tomkinson, Alan E et al. (2017) The Human Ligase III?-XRCC1 Protein Complex Performs DNA Nick Repair after Transient Unwrapping of Nucleosomal DNA. J Biol Chem 292:5227-5238
Zhou, Jia; Chan, Jany; Lambelé, Marie et al. (2017) NEIL3 Repairs Telomere Damage during S Phase to Secure Chromosome Segregation at Mitosis. Cell Rep 20:2044-2056
Marsden, Carolyn G; Jensen, Ryan B; Zagelbaum, Jennifer et al. (2016) The Tumor-Associated Variant RAD51 G151D Induces a Hyper-Recombination Phenotype. PLoS Genet 12:e1006208
Lee, Andrea J; Wallace, Susan S (2016) Visualizing the Search for Radiation-damaged DNA Bases in Real Time. Radiat Phys Chem Oxf Engl 1993 128:126-133
Cannan, Wendy J; Pederson, David S (2016) Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin. J Cell Physiol 231:3-14
Silva, Michelle C; Morrical, Milagros D; Bryan, Katie E et al. (2016) RAD51 variant proteins from human lung and kidney tumors exhibit DNA strand exchange defects. DNA Repair (Amst) 42:44-55

Showing the most recent 10 out of 61 publications