Metastatic tumor cells are distinguished by their ability to invade the basement membrane of epithelialbarriers and migrate to distant sites. Recent studies from this program demonstrate that host macrophagesare critical for the motility and invasion of tumor cells, due to a paracrine loop involving the mutual signalingand chemotaxis between macrophages and tumor cells. PI3K is a critical regulator of cell motility, anddistinct PI3K isoforms are required for regulation of actin-based motility in tumor cells versus macrophages.We propose to use isoform-specific inhibitors of Class IA PISKs as well as genetic approaches to examinethe requirement for PI3K-mediated motility of both tumor cells and macrophages during invasion andmetastasis. By selectively inhibiting the motility of tumor cells versus macrophages, we will test whether theenhanced tumor cell chemotaxis observed in the presence of macrophages requires pre-exposure tomacrophage-derived cytokines, versus the presence of continuous macrophage signaling during coordinatedmigration of the two cell types. We will also examine the metastatic behavior of tumor cells expressingactivating mutations of PI3K that are commonly found in human breast cancer. The unique assaysdeveloped by this program will allow a detailed analysis of how oncogenic p110ct mutants affect the tumorcell-macrophage paracrine loop. Finally, studies from this program have shown that genes coding forproteins that modulate the myosin-ll regulatory pathway are up-regulated in invasive tumor cells and that theamoeboid motility of tumor cells in a 3D matrix is mediated by the myosin-ll regulatory pathway. Given thesefindings, and our observations that PI3K regulates myosin-ll-based contractility in tumor cells, we willexamine the PI3K isoform-dependence of myosin-ll phosphorylation, the identification of intermediarysignaling pathways in tumor cells and macrophages, and the subsequent effects on motility and invasion.These studies will complete our analysis of the motility cycle as it relates to the invasion signature, and leadto new insights into the role of macrophage-tumor cell paracrine signaling during metastasis.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA100324-06
Application #
7534106
Study Section
Special Emphasis Panel (ZCA1-RPRB-O (M1))
Project Start
2008-06-01
Project End
2013-05-31
Budget Start
2008-09-15
Budget End
2009-05-31
Support Year
6
Fiscal Year
2008
Total Cost
$233,505
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Liu, Xia; Taftaf, Rokana; Kawaguchi, Madoka et al. (2018) Homophilic CD44 Interactions Mediate Tumor Cell Aggregation and Polyclonal Metastasis in Patient-Derived Breast Cancer Models. Cancer Discov :
Nobre, Ana Rita; Entenberg, David; Wang, Yarong et al. (2018) The Different Routes to Metastasis via Hypoxia-Regulated Programs. Trends Cell Biol 28:941-956
Donnelly, Sara K; Miskolci, Veronika; Garrastegui, Alice M et al. (2018) Characterization of Genetically Encoded FRET Biosensors for Rho-Family GTPases. Methods Mol Biol 1821:87-106
Entenberg, David; Voiculescu, Sonia; Guo, Peng et al. (2018) A permanent window for the murine lung enables high-resolution imaging of cancer metastasis. Nat Methods 15:73-80
Norwood Toro, Laura E; Wang, Yarong; Condeelis, John S et al. (2018) Myosin-IIA heavy chain phosphorylation on S1943 regulates tumor metastasis. Exp Cell Res 370:273-282
Bresnick, Anne R (2018) S100 proteins as therapeutic targets. Biophys Rev 10:1617-1629
Suyama, Kimita; Yao, Jiahong; Liang, Huizhi et al. (2018) An Akt3 Splice Variant Lacking the Serine 472 Phosphorylation Site Promotes Apoptosis and Suppresses Mammary Tumorigenesis. Cancer Res 78:103-114
Pastoriza, Jessica M; Karagiannis, George S; Lin, Juan et al. (2018) Black race and distant recurrence after neoadjuvant or adjuvant chemotherapy in breast cancer. Clin Exp Metastasis 35:613-623
Arwert, Esther N; Harney, Allison S; Entenberg, David et al. (2018) A Unidirectional Transition from Migratory to Perivascular Macrophage Is Required for Tumor Cell Intravasation. Cell Rep 23:1239-1248
Gizzi, Anthony S; Grove, Tyler L; Arnold, Jamie J et al. (2018) A naturally occurring antiviral ribonucleotide encoded by the human genome. Nature 558:610-614

Showing the most recent 10 out of 234 publications