HTLV-1 is the etiological agent of adult T-cell leukemia lymphoma (ATLL). ATLL cells are characterized by constitutive NF?B activation, a key feature of other lymphomas, myeloma, and solid tumors. The Tax oncoprotein is the key viral determinant for NF?B activation. Our previous studies showed that the classical and especially, the alternative NF?B pathways were critical in conferring resistance to apoptosis. Our primary hypothesis is that Tax activation of NF?B is critical for tumorigenesis, particularly the alternative (alt) NF?B pathway. The current study will use innovative, physiological lymphoma models to define the role in tumorigenesis of each NF?B pathway and identify the key regulators of the NF?B pathway.
Aim 1. Aim 1. To assess the role of alt NF?B activity in Tax-mediated transformation A new humanized mouse model is used for HTLV-1 infection and lymphoma development. We will use viral variants expressing Tax mutants with defects in activating the alternative NF?B pathway or both NF?B pathways, in order to define their role in disease pathogenesis. A novel high-throughput viral integration assay is used to monitor clonality of infected cells in these experiments.
Aim 2. To identify and characterize Tax interactive proteins that mediate alt NF?B activation We will identify Tax interactive proteins that mediate alt NF?B pathway activation. Proteins that interact with wild type but not mutant Tax will then be characterized using shRNAs to assess their effect on Tax induced cleavage of alt NF?B precursor protein, p100, as well as effects on proliferation and apoptosis of HTLV-1 transformed cells in culture and immunodeficient mice. It is expected that the information these physiologically relevant mouse models will identify key target genes that may be inhibited in therapeutic trials of ATLL or other lymphomas.

Public Health Relevance

HTLV-1 causes an aggressive form of leukemia/lymphoma. The Tax protein is critical for tumor initiation. Tax activation of gene expression through the nuclear kappa B (NFkB) pathway is responsible for the ability of these tumor cells to avoid cell death. The current project examines the role of the

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA100730-11A1
Application #
8742042
Study Section
Special Emphasis Panel (ZCA1-RPRB-J (M1))
Project Start
2014-09-23
Project End
2019-08-31
Budget Start
2014-09-23
Budget End
2015-08-31
Support Year
11
Fiscal Year
2014
Total Cost
$419,534
Indirect Cost
$110,473
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Panfil, Amanda R; Dissinger, Nathan J; Howard, Cory M et al. (2016) Functional Comparison of HBZ and the Related APH-2 Protein Provides Insight into Human T-Cell Leukemia Virus Type 1 Pathogenesis. J Virol 90:3760-72
Esser, Alison K; Schmieder, Anne H; Ross, Michael H et al. (2016) Dual-therapy with αvβ3-targeted Sn2 lipase-labile fumagillin-prodrug nanoparticles and zoledronic acid in the Vx2 rabbit tumor model. Nanomedicine 12:201-11
Su, Xinming; Esser, Alison K; Amend, Sarah R et al. (2016) Antagonizing Integrin β3 Increases Immunosuppression in Cancer. Cancer Res 76:3484-95
Kawatsuki, A; Yasunaga, J-I; Mitobe, Y et al. (2016) HTLV-1 bZIP factor protein targets the Rb/E2F-1 pathway to promote proliferation and apoptosis of primary CD4(+) T cells. Oncogene 35:4509-17
Murphy, Jane; Hall, William W; Ratner, Lee et al. (2016) Novel interactions between the HTLV antisense proteins HBZ and APH-2 and the NFAR protein family: Implications for the HTLV lifecycles. Virology 494:129-42
Niewiesk, Stefan (2016) Animals Models of Human T Cell Leukemia Virus Type I Leukemogenesis. ILAR J 57:3-11
Panfil, Amanda R; Martinez, Michael P; Ratner, Lee et al. (2016) Human T-cell leukemia virus-associated malignancy. Curr Opin Virol 20:40-46
Kroep, J R; Charehbili, A; Coleman, R E et al. (2016) Effects of neoadjuvant chemotherapy with or without zoledronic acid on pathological response: A meta-analysis of randomised trials. Eur J Cancer 54:57-63
Haines, Robyn A; Urbiztondo, Rebeccah A; Haynes 2nd, Rashade A H et al. (2016) Characterization of New Zealand White Rabbit Gut-Associated Lymphoid Tissues and Use as Viral Oncology Animal Model. ILAR J 57:34-43
Ratner, L; Rauch, D; Abel, H et al. (2016) Dose-adjusted EPOCH chemotherapy with bortezomib and raltegravir for human T-cell leukemia virus-associated adult T-cell leukemia lymphoma. Blood Cancer J 6:e408

Showing the most recent 10 out of 146 publications