The controlled collection and processing of clinical specimens from patients with myeloid leukemia and myelodysplastic syndrome continues to be a critical activity forthe accurate, efficient, and comprehensive acquisition of genomic data required for this program project. Similarly, a repository of quality controlled and standardized gene expression, genomic copy number, genotyping, and epigenetic data corresponding to these specimens will continue to aid in elucidating the genomic basis of AML and MDS. Procedural enhancements and operation within a regulated laboratory environment will accelerate the transition of key genomic findings to application in clinical trials. Accordingly, this Core has two Specific Aims:
Specific Aim 1. We will collect, store, and process tissue specimens from patients and families with AML and MDS seen at this institution. We will include malignant cell populations from bone marrow aspirates, peripheral blood, and extramedullary sites as well as skin punch biopsy and buccal lavage specimens representing non-malignant cell populations. Serum and plasma will be collected for future proteomic biomarker studies. Specimens will be collected throughout each patient's disease course (initial presentation, remission, relapse/refractory disease) and where appropriate, archival specimens from previous malignancies will be retrieved. Specimens will be processed to cellular RNA (mRN/VncRNA), genomic DNA, and protein extracts as required for each study. Cellular populations will also be viably frozen for future xenograft studies. Particular attention to specimen procurement (e.g. rapid processing of leukemia cells to preserve transcript profiles) and high standards of quality control will be practiced.
Specific Aim 2 : Using microarray platforms, we will generate whole transcriptome expression (mRNA, miRNA), whole genome copy number and genotyping, and whole epigenome DNA methylation data. Affymetrix Exon 1 .OST and miRNA 2.0 arrays will be used to generate quantitative transcriptional profiles. Affymetrix SNP 6.0 arrays will generate genomic copy number, loss of heterozygosity (LOH), and genotype data, lllumina Infinium HumanMethylation450 arrays will generate epigenome-wide DNA methylation data. While massively parallel sequencing approaches will be performed for primary tumor specimens in Projects 1-4, use of these microarray platforms will be concentrated in experiments with multiple conditions (e.g., chemotherapy sensitivity, xenograft studies) and for susceptibility studies (Project 3) to best allocate grant resources.

Public Health Relevance

Core B will continue to provide several functions critical for the success of this Program Project and, ultimately, for the better understanding of the genetic and epigenetic basis of AML. We will continue to accrue a large inventory of patient material and to generate targeted gene expression, genotyping, and epigenetic microarray data for experiments proposed herein, all tracked and maintained by a state ofthe art database. While this growing catalog of patient biospecimens and associated molecular data will be of tremendous use to participants in this Program Project, the resources generated may be leveraged by other investigators focused on acute myeloid leukemias through other, independent initiatives.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-J (J1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Saint Louis
United States
Zip Code
Engle, E K; Fisher, D A C; Miller, C A et al. (2015) Clonal evolution revealed by whole genome sequencing in a case of primary myelofibrosis transformed to secondary acute myeloid leukemia. Leukemia 29:869-76
Al-Hussaini, Muneera; DiPersio, John F (2014) Small molecule inhibitors in acute myeloid leukemia: from the bench to the clinic. Expert Rev Hematol 7:439-64
Jacoby, M A; De Jesus Pizarro, R E; Shao, J et al. (2014) The DNA double-strand break response is abnormal in myeloblasts from patients with therapy-related acute myeloid leukemia. Leukemia 28:1242-51
Sarkaria, S M; Christopher, M J; Klco, J M et al. (2014) Primary acute myeloid leukemia cells with IDH1 or IDH2 mutations respond to a DOT1L inhibitor in vitro. Leukemia 28:2403-6
Miller, Christopher A; White, Brian S; Dees, Nathan D et al. (2014) SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput Biol 10:e1003665
Klco, Jeffery M; Spencer, David H; Miller, Christopher A et al. (2014) Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell 25:379-92
Russler-Germain, David A; Spencer, David H; Young, Margaret A et al. (2014) The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell 25:442-54
Hughes, Andrew E O; Magrini, Vincent; Demeter, Ryan et al. (2014) Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing. PLoS Genet 10:e1004462
White, Brian S; DiPersio, John F (2014) Genomic tools in acute myeloid leukemia: From the bench to the bedside. Cancer 120:1134-44
Grieselhuber, N R; Klco, J M; Verdoni, A M et al. (2013) Notch signaling in acute promyelocytic leukemia. Leukemia 27:1548-57

Showing the most recent 10 out of 65 publications