This proposal is based on the central hypothesis that improved understanding of the molecular pathways that contributing to the disordered regulation of cell proliferation, differentiation, and apoptosis in T-cell lymphoblastic leukemia and lymphoma (T-ALL/T-LBL) will ultimately lead to improved therapy of these diseases. The research will be accomplished through the coordinated efforts of 5 research projects and 2 cores. In Project 1, Tom Look will work closely with Rick Young to identify downstream target genes within TAL1-mediated transcriptional networks that contribute to the disordered regulation of cell proliferation, differentiation, and apoptosis in human T-cell malignancies. In Project 2, Harald von Boehmer will identify molecular pathways that cooperate with Notch1 signaling in lymphomagenesis by analyzing the impact of insertional mutagenesis, epigenetic regulation, and miRNA-dependent regulation on the generation of T-ALL from in Notch1 overexpressing T-cell progenitors. In Project 3, Peter Sicinski will study the molecular function of D-cyclins in Notch-driven murine T-ALL model (together with Harald von Boehmer) and in human T-ALL (with Tom Look). In Project 4, Fred Alt will elucidate molecular mechanisms and activated pathways associated with recurrent chromosomal translocations in thymic leukemias and lymphomas. In Project 5, Rick Young will identify the epigenetic mechanisms regulating normal T cell development and leukemogenesis and link them to the oncogenic action of TAL1 and Notch1 in T-ALL. Discoveries in murine models made by Drs. von Boehmer, Sicinski, Alt and Young will be immediately translated to determine relevance to human T-ALL/LBL molecular pathogenesis in collaboration with Dr. Look. These projects will be augmented with a Biostatistics Core (Donna Neuberg), to assist with the analysis of microarray data and the optimal design of animal experiments;and an Administrative Core (Tom Look and Harald von Boehmer), to oversee the administration and coordination of the research interactions among program investigators. Such interactions are expected to accelerate the pace at which important discoveries are generated in these projects and in the program as a whole.

Public Health Relevance

Successful completion of this 5-year renewal of our program will improve understanding of how T-cell regulatory pathways are disrupted to initiate and maintain the transformed phenotype in T-ALL and T-LBL, with the long-term goal to pinpoint genes whose inhibition could lead to the development of new and highly specific treatment strategies for these malignant diseases.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-O (O1))
Program Officer
Mufson, R Allan
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dana-Farber Cancer Institute
United States
Zip Code
Frock, Richard L; Hu, Jiazhi; Meyers, Robin M et al. (2015) Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol 33:179-86
Tepsuporn, Suprawee; Hu, Jiazhi; Gostissa, Monica et al. (2014) Mechanisms that can promote peripheral B-cell lymphoma in ATM-deficient mice. Cancer Immunol Res 2:857-66
Anderson, N M; Harrold, I; Mansour, M R et al. (2014) BCL2-specific inhibitor ABT-199 synergizes strongly with cytarabine against the early immature LOUCY cell line but not more-differentiated T-ALL cell lines. Leukemia 28:1145-8
Kwiatkowski, Nicholas; Zhang, Tinghu; Rahl, Peter B et al. (2014) Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 511:616-20
Hu, Jiazhi; Tepsuporn, Suprawee; Meyers, Robin M et al. (2014) Developmental propagation of V(D)J recombination-associated DNA breaks and translocations in mature B cells via dicentric chromosomes. Proc Natl Acad Sci U S A 111:10269-74
Anders, Lars; Guenther, Matthew G; Qi, Jun et al. (2014) Genome-wide localization of small molecules. Nat Biotechnol 32:92-6
Gutierrez, Alejandro; Pan, Li; Groen, Richard W J et al. (2014) Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia. J Clin Invest 124:644-55
Mansour, Marc R; Abraham, Brian J; Anders, Lars et al. (2014) Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 346:1373-7
Knoechel, Birgit; Roderick, Justine E; Williamson, Kaylyn E et al. (2014) An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet 46:364-70
Gostissa, Monica; Schwer, Bjoern; Chang, Amelia et al. (2014) IgH class switching exploits a general property of two DNA breaks to be joined in cis over long chromosomal distances. Proc Natl Acad Sci U S A 111:2644-9

Showing the most recent 10 out of 44 publications