Project 1 - Meenhard Herlyn and Keiran Smalley Our long-term goal is to develop new therapies for melanoma. Five year survival rates for patients with disseminated disease have remained at approximately 15% for the last 30 years. Our overall hypothesis is that melanoma is a curable disease, provided the right pathways are targeted. The discovery in 2002 of specific activating mutations in the BRAF gene, the V600E mutation, has made this gene the first bona fide therapeutic target in melanoma. Lesions from patients with superficial spreading melanoma that lack BRAF mutations often harbor N-Ras mutations suggesting that activation of the MARK (mitogen-activated protein kinase) pathway may be a critical step in the oncogenic transformation of melanoma. However, the fact that BRAF mutations are also found in non-malignant nevi suggests that BRAF mutations alone are not sufficient for malignant transformation. Our working hypothesis is that BRAF is an essential component of any future disseminated melanoma therapy, but that other pathways independent of BRAF will also need to be targeted. We are focusing on the phospho inositide-3-kinase (PI3K) pathway due to its critical role in cell survival. We will use unique in vitro and in vivo models of human metastatic melanoma that provide an optimal environment for experimental melanoma therapy. Specifically, we propose to: 1. Target melanoma cells with mutant BRAF in two-dimensional (2D) conventional cell culture and three-dimensional (3D) organotypic models using small molecule inhibitors. We are testing the following three hypotheses: a. Targeting BRAF/MEK alone is not sufficient for melanoma cell apoptosis;b. Targeting BRAF/MEK in combination with inhibitors of PI3K/Akt will overcome cell survival to induce apoptosis;c. Amplifications in BRAF and CDK4/Cyclin D1 contribute to BRAF/MEK inhibitor resistance in sub-groups of melanomas. 2: Determine how the inhibition of GSK3|3 induces apoptosis of melanoma cells. We are testing the following two hypotheses: a. GSK3|3 inhibitors induce apoptosis in melanoma cells through direct pharmacological activation of p53;b. GSK3|3 inhibitors induce apoptosis through down-regulation of Mdm2. The proposed studies represent a close collaboration between all members of the Program Project on the development of novel inhibitors for BRAF, PI3K, and GSKSp.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA114046-05
Application #
8378447
Study Section
Special Emphasis Panel (ZCA1-GRB-P)
Project Start
Project End
2013-08-31
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
5
Fiscal Year
2012
Total Cost
$486,670
Indirect Cost
$102,122
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Noguera-Ortega, Estela; Amaravadi, Ravi K (2018) Autophagy in the Tumor or in the Host: Which Plays a Greater Supportive Role? Cancer Discov 8:266-268
Jenkins, Russell W; Aref, Amir R; Lizotte, Patrick H et al. (2018) Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Cancer Discov 8:196-215
Emptage, Ryan P; Lemmon, Mark A; Ferguson, Kathryn M et al. (2018) Structural Basis for MARK1 Kinase Autoinhibition by Its KA1 Domain. Structure 26:1137-1143.e3
Barnoud, Thibaut; Budina-Kolomets, Anna; Basu, Subhasree et al. (2018) Tailoring Chemotherapy for the African-Centric S47 Variant of TP53. Cancer Res 78:5694-5705
Liu, Shujing; Zhang, Gao; Guo, Jianping et al. (2018) Loss of Phd2 cooperates with BRAFV600E to drive melanomagenesis. Nat Commun 9:5426
Pathria, Gaurav; Scott, David A; Feng, Yongmei et al. (2018) Targeting the Warburg effect via LDHA inhibition engages ATF4 signaling for cancer cell survival. EMBO J 37:
Reyes-Uribe, Patricia; Adrianzen-Ruesta, Maria Paz; Deng, Zhong et al. (2018) Exploiting TERT dependency as a therapeutic strategy for NRAS-mutant melanoma. Oncogene 37:4058-4072
Rebecca, Vito W; Nicastri, Michael C; Fennelly, Colin et al. (2018) PPT1 promotes tumor growth and is the molecular target of chloroquine derivatives in cancer. Cancer Discov :
Kaur, Amanpreet; Ecker, Brett L; Douglass, Stephen M et al. (2018) Remodeling of the Collagen Matrix in Aging Skin Promotes Melanoma Metastasis and Affects Immune Cell Motility. Cancer Discov :
Chen, Gang; Huang, Alexander C; Zhang, Wei et al. (2018) Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560:382-386

Showing the most recent 10 out of 144 publications