The overall goal of project 4 is to develop novel approaches distinct from ATP mimetics to overcome resistance to BRAF inhibitors for treatment of melanoma. This project will focus on two mechanisms of resistance; BRAF dimerization leading to paradoxical MAPK activation and STATS activation which is downstream of a number of parallel signaling pathways that are activated in BRAF inhibitor resistant cells as well as in BRAF^'^ cells. We will also determine if combination of BRAF inhibitors with the inhibition of broad cellular biological properties that sustain survival of resistant tumor cells, specifically the stress response or autophagy, can kill melanomas and prevent the emergence of drug resistance. Together, we hypothesize that targeting these pathways will overcome therapeutic resistance in a large subset of BRAF mutant melanomas, and possibly other melanoma genotypes.
The Specific Aims of the proposal are to (1) Develop inhibitors that selectively target RAF dimers. Since BRAF inhibition can lead to paradoxical MAPK activation through RAF dimers in both normal tissues and in resistant melanoma tumors, we hypothesize that targeting RAF dimers will be more effective for melanoma therapy than targeting monomeric mutant BRAF. We will employ two complementary inhibitor design strategies to target RAF dimers and evaluate the biological activity of the resulting inhibitors. (2) Develop novel STAT3 inhibitors. STATS is activated in a high proportion of melanomas and is upregulated in response to BRAF and MEK inhibition. In preliminary studies, we have developed a family of quinolol/naphthol compounds that are low-micromolar inhibitors of STATS activation through the apparent binding to the SH2 phospho-binding domain of STATS. We will now use structure-based design and medicinal chemistry to prepare more potent and selective inhibitors and evaluate the biological activity of inhibitors alone and in combination with BRAF inhibitors. (3) Determine if combination of BRAF inhibitors with HSP70 or autophagy antagonists can kill melanomas and prevent the emergence of drug resistance. HSP70 is overexpressed in BRAF mutant melanoma and HSP70 inhibitors have shown promising pre-clinical efficacy in melanoma. High autophagy levels are also common in melanoma and correlate with poor response to chemotherapy and shortened overall survival; and BRAF inhibitors can induce autophagy as a survival mechanism. We hypothesize that dual inhibition of BRAF and HSP70 or autophagy will be an effective therapeutic strategy for melanoma. Together, we anticipate that these studies will provide novel and attractive avenues to overcome resistance to BRAF inhibition in melanoma in order to provide effective long-lasting therapies for melanoma patients.

Public Health Relevance

In melanoma, the elevated activity of mutant BRAF kinase accounts for ~50% of malignant tumors. BRAF mutant selective inhibitors have extended the survival of patients in the clinic, however, most patients develop drug resistance causing the cancer to return. There is therefore a critical unmet need for novel approaches to overcome resistance to BRAF inhibitors. The goal of project 4 is to develop novel approaches to overcome resistance to BRAF inhibitors for treatment of melanoma. We anticipate that these studies will provide novel and attractive avenues to overcome resistance to BRAF inhibition in melanoma in order to provide effective long-lasting therapies for melanoma patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA114046-10
Application #
9334560
Study Section
Special Emphasis Panel (ZCA1)
Project Start
2008-05-16
Project End
2019-08-31
Budget Start
2017-09-01
Budget End
2018-08-31
Support Year
10
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Ojha, Rani; Leli, Nektaria M; Onorati, Angelique et al. (2018) ER translocation of the MAPK pathway drives therapy resistance in BRAF mutant melanoma. Cancer Discov :
Kugel 3rd, Curtis H; Douglass, Stephen M; Webster, Marie R et al. (2018) Age Correlates with Response to Anti-PD1, Reflecting Age-Related Differences in Intratumoral Effector and Regulatory T-Cell Populations. Clin Cancer Res 24:5347-5356
Nicastri, Michael C; Rebecca, Vito W; Amaravadi, Ravi K et al. (2018) Dimeric quinacrines as chemical tools to identify PPT1, a new regulator of autophagy in cancer cells. Mol Cell Oncol 5:e1395504
Nti, Akosua A; Serrano, Leona W; Sandhu, Harpal S et al. (2018) FREQUENT SUBCLINICAL MACULAR CHANGES IN COMBINED BRAF/MEK INHIBITION WITH HIGH-DOSE HYDROXYCHLOROQUINE AS TREATMENT FOR ADVANCED METASTATIC BRAF MUTANT MELANOMA: Preliminary Results From a Phase I/II Clinical Treatment Trial. Retina :
Perego, M; Maurer, M; Wang, J X et al. (2018) A slow-cycling subpopulation of melanoma cells with highly invasive properties. Oncogene 37:302-312
Echevarría-Vargas, Ileabett M; Reyes-Uribe, Patricia I; Guterres, Adam N et al. (2018) Co-targeting BET and MEK as salvage therapy for MAPK and checkpoint inhibitor-resistant melanoma. EMBO Mol Med 10:
Hammerlindl, Heinz; Ravindran Menon, Dinoop; Hammerlindl, Sabrina et al. (2018) Acetylsalicylic Acid Governs the Effect of Sorafenib in RAS-Mutant Cancers. Clin Cancer Res 24:1090-1102
Ecker, Brett L; Kaur, Amanpreet; Douglass, Stephen M et al. (2018) Age-Related Changes in HAPLN1 Increase Lymphatic Permeability and Affect Routes of Melanoma Metastasis. Cancer Discov :
Cañadas, Israel; Thummalapalli, Rohit; Kim, Jong Wook et al. (2018) Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Nat Med 24:1143-1150
Grasso, Michael; Estrada, Michelle A; Berrios, Kiara N et al. (2018) N-(7-Cyano-6-(4-fluoro-3-(2-(3-(trifluoromethyl)phenyl)acetamido)phenoxy)benzo[d]thiazol-2-yl)cyclopropanecarboxamide (TAK632) Promotes Inhibition of BRAF through the Induction of Inhibited Dimers. J Med Chem 61:5034-5046

Showing the most recent 10 out of 144 publications