Helicobacter pylori infects half the world and is the principal cause of gastric cancer, the second leading cause of cancer death worldwide. However, universal eradication is not feasible and there is a strong need to identify persons at high risk for cancer development and develop new strategies for intervention. We have directly implicated phosphorylation of the epidermal growth factor receptor (pEGFR) and induction of spermine oxidase (SMO) in the aberrant signaling response to H. pylori in gastric epithelial cells. Our published and preliminary data show that oxidation of the polyamine spermine by SMO results in generation of H2 02 that is the cause of DNA damage in infected gastric epithelial cells, and that pEGFR is required for SMO expression and mediates the generation of a subpopulation of cells with SMO-driven DNA damage that are resistant to apoptosis. These events occur in conditionally immortalized gastric epithelial cells and in in vivo models of gastric carcinogenesis (INS-GAS mice and Mongolian gerbils), and human tissues exhibit a strong correlation of SMO and DNA damage. Inhibition of polyamine synthesis or SMO reduces gastric dysplasia and carcinoma in gerbils. Our phosphoproteomics and human tissue microarray studies have implicated EGFR and ErbB2 signaling in addition to SMO in the initiation of gastric carcinogenesis. Additionally, depletion of polyamines in vitro and in vivo reduces oxidative DNA damage and carcinoma despite substantially increasing pEGFR. Our hypothesis is that polyamines determine the effects of EGFR phosphorylation on H. pylori-induced inflammation, DNA damage, and gastric carcinogenesis.
Our Specific Aims are to determine the following in H. pylori-induced gastric carcinogenesis: 1) the role of EGFR transactivation and apoptosis-resistant cells; 2) if polyamines are required for the deleterious effects of pEGFR; and 3) the positive and negative regulators of EGFR signaling that are involved. These studies will incorporate unique in vitro and ex vivo models such as gastric organoids, and proven models of gastric dysplasia and carcinoma in mice and gerbils that are employed across this PPG to pursue these aims. We will benefit from continued close collaborations with Projects 1 and 3 that will include exchange of H. pylori mutant strains and output strains from our different animals systems, sharing of samples and expertise related to signaling, and our analysis of SMO-induced oxidative stress and DNA damage. This project will leverage the exceptional quality of Histopathology Core A for Aims 1-3 and Proteomics Core 8 for Aim 3, and will benefit from the uniquely strong environment at Vanderbilt for studies of H. pylori and gastric cancer.

Public Health Relevance

Helicobacter pylori is a type of bacteria that infects the stomach of half of the world's human population, and can lead to the development of gastric cancer, the second leading cause of cancer death worldwide. This project will utilize cell and animal model systems to assess novel molecular pathways altered by H. pylori that lead to cells with damaged DNA that are abnormally resistant to cell death. Our studies seek to define new strategies for prevention of H. pylori-induced gastric cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
6P01CA116087-09
Application #
9248620
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2016-04-30
Budget End
2016-12-31
Support Year
9
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
079917897
City
Nashville
State
TN
Country
United States
Zip Code
37232
Singh, Kshipra; Coburn, Lori A; Asim, Mohammad et al. (2018) Ornithine Decarboxylase in Macrophages Exacerbates Colitis and Promotes Colitis-Associated Colon Carcinogenesis by Impairing M1 Immune Responses. Cancer Res 78:4303-4315
Corley, Douglas A; Peek Jr, Richard M (2018) When Should Guidelines Change? A Clarion Call for Evidence Regarding the Benefits and Risks of Screening for Colorectal Cancer at Earlier Ages. Gastroenterology 155:947-949
Gobert, Alain P; Al-Greene, Nicole T; Singh, Kshipra et al. (2018) Distinct Immunomodulatory Effects of Spermine Oxidase in Colitis Induced by Epithelial Injury or Infection. Front Immunol 9:1242
Raghunathan, Krishnan; Foegeding, Nora J; Campbell, Anne M et al. (2018) Determinants of Raft Partitioning of the Helicobacter pylori Pore-Forming Toxin VacA. Infect Immun 86:
Scoville, Elizabeth A; Allaman, Margaret M; Brown, Caroline T et al. (2018) Alterations in Lipid, Amino Acid, and Energy Metabolism Distinguish Crohn's Disease from Ulcerative Colitis and Control Subjects by Serum Metabolomic Profiling. Metabolomics 14:
Sierra, Johanna C; Asim, Mohammad; Verriere, Thomas G et al. (2018) Epidermal growth factor receptor inhibition downregulates Helicobacter pylori-induced epithelial inflammatory responses, DNA damage and gastric carcinogenesis. Gut 67:1247-1260
Blosse, Alice; Lehours, Philippe; Wilson, Keith T et al. (2018) Helicobacter: Inflammation, immunology, and vaccines. Helicobacter 23 Suppl 1:e12517
Coburn, Lori A; Singh, Kshipra; Asim, Mohammad et al. (2018) Loss of solute carrier family 7 member 2 exacerbates inflammation-associated colon tumorigenesis. Oncogene :
Loh, John T; Beckett, Amber C; Scholz, Matthew B et al. (2018) High-Salt Conditions Alter Transcription of Helicobacter pylori Genes Encoding Outer Membrane Proteins. Infect Immun 86:
Noto, Jennifer M; Chopra, Abha; Loh, John T et al. (2018) Pan-genomic analyses identify key Helicobacter pylori pathogenic loci modified by carcinogenic host microenvironments. Gut 67:1793-1804

Showing the most recent 10 out of 203 publications