This Administrative Core will ensure that effective communication and the flow of materials are maintained among the various projects and cores. The Core provide financial oversight and report scientific progress of the entire program to assure continued success. The Core director will work with program associates in ensuring that meetings between the PO1 investigators are scheduled regularly via face to face meeting as well as phone, emails, teleconferences, videoconferences, and WebEx presentations. These communications will ensure that the goals of the overall program projects are met and that all project and core budgets are administered properly. In addition, this core will act as a liaison between various performance sites to ensure effective utilization of institutional resources and as a catalyst to translate the discoveries made by the program project into early clinical testing in close collaborations with GI SOPRE of DFCI and other clinical departments. Finally, the Core will manage and ensure large datasets are properly deposited and useful reagents and animal models are distributed to research communities rapidly following the execution of material transfer agreement between institutions.

Public Health Relevance

The Administrative Core ensures effective communication between various projects and cores and work to provide financial management and ensure timely scientific progress towards the goals of the overall program projects.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA117969-08
Application #
8507165
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
2013-01-01
Budget End
2013-12-31
Support Year
8
Fiscal Year
2013
Total Cost
$258,452
Indirect Cost
$140,262
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Kapoor, Avnish; Yao, Wantong; Ying, Haoqiang et al. (2014) Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell 158:185-97
Sahora, Klaus; Fernández-del Castillo, Carlos; Dong, Fei et al. (2014) Not all mixed-type intraductal papillary mucinous neoplasms behave like main-duct lesions: implications of minimal involvement of the main pancreatic duct. Surgery 156:611-21
Mayers, Jared R; Wu, Chen; Clish, Clary B et al. (2014) Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med 20:1193-8
Lee, John J; Perera, Rushika M; Wang, Huaijun et al. (2014) Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc Natl Acad Sci U S A 111:E3091-100
Deschênes-Simard, Xavier; Lessard, Frédéric; Gaumont-Leclerc, Marie-France et al. (2014) Cellular senescence and protein degradation: breaking down cancer. Cell Cycle 13:1840-58
Daver, Naval; Shastri, Aditi; Kadia, Tapan et al. (2014) Phase II study of pomalidomide in combination with prednisone in patients with myelofibrosis and significant anemia. Leuk Res 38:1126-9
Viale, Andrea; Pettazzoni, Piergiorgio; Lyssiotis, Costas A et al. (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514:628-32
Lyssiotis, Costas A; Cantley, Lewis C (2014) Targeting metabolic scavenging in pancreatic cancer. Clin Cancer Res 20:6-8
Commisso, Cosimo; Davidson, Shawn M; Soydaner-Azeloglu, Rengin G et al. (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497:633-7
Lyssiotis, Costas A; Son, Jaekyoung; Cantley, Lewis C et al. (2013) Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance. Cell Cycle 12:1987-8

Showing the most recent 10 out of 48 publications