The vast majority of pancreatic ductal adenocarcinomas (PDAC) involve activating mutations in KRAS (KRAS*) and as with other KRAS* cancers, PDAC show minimal response to existing therapies used in the clinic. While no satisfactory KRAS*-speclfic drugs are currently available, inhibitors of MEK and PI3K (MEKi and PI3Ki)?pathways necessary for KRAS*-mediated cellular transformation in vitro, are now being introduced into clinical trials. The central hypothesis guiding this project is that PDAC utilize the PI3K and MEK pathways In a redundant way to drive tumor growth and that a critical role for these pathways Involves the regulation of tumor metabolism. The overall goals of this proposal are to determine the impact of MEKi/PI3Ki on PDAC cell signaling, metabolism, and therapeutic response. These efforts will be coupled with an investigation of metabolic biomarkers for MEK/PI3K signaling and identification of mechanisms of therapeutic resistance which would be critical in future therapeutic trials.
The Aims are: 1. Determine the impact of MEK/PI3K inhibition in PDAC. Genetically engineered mouse models as well as genomically characterized organotypic human PDAC cultures will be used to compare the cellular responses and signaling pathway alterations provoked by genetic or pharmacologic MEKi/PI3Ki against the backdrop of different combinations of tumor suppressor mutations found in human PDAC. 2. Determine the impact of MEK/PISK inhibition on PDAC metabolism. Glutamine and glucose are the main nutrients used by tumor cells for energy generation and for anabolic processes. The contribution of these nutrients to PDAC metabolism in vivo and the impact of MEKi/PI3Ki on their utilization will be determined using a series of radioisotope labeling, molecular imaging, and LC-MS approaches. These studies will give insight Into the regulation of PDAC metabolism and define biomarkers for the activity of these pathways. 3. Determine the mechanisms of resistance to MEKi/PI3Ki in PDAC. Preliminary studies indicate that mouse PDAC models will eventually develop acquired resistance to MEKi/PI3Ki. The mechanisms of acquired resistance will be explored by a series of phosphoproteomics and genetic analyses. In addition, as a means to increase the bi

Public Health Relevance

Pancreatic ductal adenocarcinoma (PDAC) is the 4th most common cause of cancer-related death in the USA, carrying an average survival of only 6 months. Our proposed studies will test the importance of two interrelated biochemical signaling pathways in PDAC growth, develop imaging methods to monitor whether drugs against these pathways are effective, and determine how PDAC become resistant to these drugs. The

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
United States
Zip Code
Kapoor, Avnish; Yao, Wantong; Ying, Haoqiang et al. (2014) Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell 158:185-97
Sahora, Klaus; Fernández-del Castillo, Carlos; Dong, Fei et al. (2014) Not all mixed-type intraductal papillary mucinous neoplasms behave like main-duct lesions: implications of minimal involvement of the main pancreatic duct. Surgery 156:611-21
Mayers, Jared R; Wu, Chen; Clish, Clary B et al. (2014) Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med 20:1193-8
Lee, John J; Perera, Rushika M; Wang, Huaijun et al. (2014) Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc Natl Acad Sci U S A 111:E3091-100
Deschênes-Simard, Xavier; Lessard, Frédéric; Gaumont-Leclerc, Marie-France et al. (2014) Cellular senescence and protein degradation: breaking down cancer. Cell Cycle 13:1840-58
Daver, Naval; Shastri, Aditi; Kadia, Tapan et al. (2014) Phase II study of pomalidomide in combination with prednisone in patients with myelofibrosis and significant anemia. Leuk Res 38:1126-9
Viale, Andrea; Pettazzoni, Piergiorgio; Lyssiotis, Costas A et al. (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514:628-32
Lyssiotis, Costas A; Cantley, Lewis C (2014) Targeting metabolic scavenging in pancreatic cancer. Clin Cancer Res 20:6-8
Commisso, Cosimo; Davidson, Shawn M; Soydaner-Azeloglu, Rengin G et al. (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497:633-7
Lyssiotis, Costas A; Son, Jaekyoung; Cantley, Lewis C et al. (2013) Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance. Cell Cycle 12:1987-8

Showing the most recent 10 out of 48 publications