Noninvasive, longitudinal imaging of PDAC development, maintenance and therapeutic efficacy is a fundamental aspect for all portions of this P01. The core serves two specific purposes: a) as a high-tech core and intellectual resource to perform and assist with all In vivo Imaging experiments and b) as an Innovative research core to develop new Imaging protocols and agents for high priority targets derived from different projects. The Projects will use the Core not only to detect the location and size of tumors, but importantly also to monitor responses to drugs that target specific pathways. For example, activation of the K-Ras and PI3K pathways turns on genes for glucose uptake and metabolism;drugs that turn off these pathways often cause acute changes in 18FDG-PET, prior to tumor shrinkage. Likewise, Myc regulates genes for glucose uptake so drugs that affect the Myc pathway are also expected to have acute effects on glucose uptake and metabolism. The Core efficiently leverages existing imaging resources but focuses specifically on unique aspects of PDAC biology and therapeutic interventions proposed in the Projects. Specifically the core will provide: a) all routine imaging technologies and protocols for PDAC imaging in GEMS, b) techniques and imaging protocols that are clinically translatable including MRI and PET-CT, c) high throughput optical screening capabilities, d) technical expertise for quantitative image analysis, e) the necessary infrastructure and expertise for image archival and distribution throughout the consortium, f) expertise in the design, synthesis and validation of novel imaging probes relevant to the goals of the projects and g) physiologic support and logistics for longitudinal Imaging in cohorts of mice including housing. The core is supported by a substantial infrastructure in the Center for Systems Biology at MGH, which includes a broad biological chemistry effort, computation and quantitative Image analysis, as well as a web-based bioinformatics platform (MlPortal) to assure access to imaging studies.

Public Health Relevance

The core will provide stability to the overall program and allow the investigators to focus on and efficiently address critical issues relevant to the goals of this P01. Centralization of the imaging efforts will also reduce overall mouse costs (by decreasing the number of mice needed in therapeutic studies), provide a higher level of expertise and promote interactions among the participating groups. Added benefits of this core are the high level of quality control, consistency of imaging protocols and reagents and efficient cross-reference of imaging results from different projects.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA117969-09
Application #
8603771
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
9
Fiscal Year
2014
Total Cost
$198,008
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Kapoor, Avnish; Yao, Wantong; Ying, Haoqiang et al. (2014) Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell 158:185-97
Sahora, Klaus; Fernández-del Castillo, Carlos; Dong, Fei et al. (2014) Not all mixed-type intraductal papillary mucinous neoplasms behave like main-duct lesions: implications of minimal involvement of the main pancreatic duct. Surgery 156:611-21
Mayers, Jared R; Wu, Chen; Clish, Clary B et al. (2014) Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med 20:1193-8
Lee, John J; Perera, Rushika M; Wang, Huaijun et al. (2014) Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc Natl Acad Sci U S A 111:E3091-100
Deschênes-Simard, Xavier; Lessard, Frédéric; Gaumont-Leclerc, Marie-France et al. (2014) Cellular senescence and protein degradation: breaking down cancer. Cell Cycle 13:1840-58
Daver, Naval; Shastri, Aditi; Kadia, Tapan et al. (2014) Phase II study of pomalidomide in combination with prednisone in patients with myelofibrosis and significant anemia. Leuk Res 38:1126-9
Viale, Andrea; Pettazzoni, Piergiorgio; Lyssiotis, Costas A et al. (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514:628-32
Lyssiotis, Costas A; Cantley, Lewis C (2014) Targeting metabolic scavenging in pancreatic cancer. Clin Cancer Res 20:6-8
Commisso, Cosimo; Davidson, Shawn M; Soydaner-Azeloglu, Rengin G et al. (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497:633-7
Lyssiotis, Costas A; Son, Jaekyoung; Cantley, Lewis C et al. (2013) Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance. Cell Cycle 12:1987-8

Showing the most recent 10 out of 48 publications