Notch proteins are the receptors in a highly conserved signal transduction system used to communicate information between cells that contact each other. The overarching goal of this Project is to elucidate the mechanism by which canonical ligands expressed on signal-sending cells activate Notch receptors on signal-receiving cells. Specifically, we propose two complementary sets of studies that will decipher two of the critical events that are required for ligand-induced Notch signaling:
Aim 1. To determine how Mind bomb induces ligand-dependent Notch signaling We will exploit the modular nature of mib and our expertise in structural and biochemical methods to determine the molecular logic underlying mind bomb function. Our top priorities will be i) to determine the structural basis for ligand-tail binding, and ii) to determine how the different Mib domains cooperate to transfer ubiquitin onto these tails.
Aim 2. To determine how ligand stimulation induces metalloprotease cleavage of Notch receptors One leading model for ligand-dependent activation of Notch posits that the endocytosis of bound ligand exerts a mechanical force on the receptor, releasing autoinhibitory interactions that protect the metalloprotease cleavage site. These studies will combine powerful single-molecule approaches and cellbased assays to evaluate the feasibility of the mechanical force model of Notch signal induction. Distinguishing between a mechanotransduction model and alternatives, such as allosteric """"""""conformational switch"""""""" models, will substantially advance our understanding of the key events required for conveying Notch signals between adjacent cells, and will have important implications for efforts to target ligand-dependent Notch signaling. Moreover, the methods developed for probing the effect of mechanical force in Notch signal transduction will have general application in many other fields where the role of force in biology is under investigation. Together, pursuit of these aims will substantially advance our understanding of the key steps responsible for conveying Notch signals between adjacent cells. In addition, they will identify new potential targets for interventions designed to interfere with oncogenic Notch signaling in a wide spectrum of human cancers.

Public Health Relevance

Ligand-dependent Notch signaling is important in many cancer-related processes, including tumor cell grovi/th/survival, angiogenesis, and the host immune response. Surprisingly little is known about the molecular details of how Notch ligands activate Notch receptors. This project will perform studies that fill this gap in current knowledge, and in doing so elucidate key aspects of Notch receptor activation that are likely to produce insights leading to new ways to target Notch in various human diseases, including cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA119070-08
Application #
8701033
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
8
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02215
Johnson, John L; Georgakilas, Georgios; Petrovic, Jelena et al. (2018) Lineage-Determining Transcription Factor TCF-1 Initiates the Epigenetic Identity of T Cells. Immunity 48:243-257.e10
Jiang, Peng; Lee, Winston; Li, Xujuan et al. (2018) Genome-Scale Signatures of Gene Interaction from Compound Screens Predict Clinical Efficacy of Targeted Cancer Therapies. Cell Syst 6:343-354.e5
Severson, Eric; Arnett, Kelly L; Wang, Hongfang et al. (2017) Genome-wide identification and characterization of Notch transcription complex-binding sequence-paired sites in leukemia cells. Sci Signal 10:
Ryan, Russell J H; Petrovic, Jelena; Rausch, Dylan M et al. (2017) A B Cell Regulome Links Notch to Downstream Oncogenic Pathways in Small B Cell Lymphomas. Cell Rep 21:784-797
McMillan, Brian J; Tibbe, Christine; Drabek, Andrew A et al. (2017) Structural Basis for Regulation of ESCRT-III Complexes by Lgd. Cell Rep 19:1750-1757
Pajcini, Kostandin V; Xu, Lanwei; Shao, Lijian et al. (2017) MAFB enhances oncogenic Notch signaling in T cell acute lymphoblastic leukemia. Sci Signal 10:
Sajed, Dipti P; Faquin, William C; Carey, Chris et al. (2017) Diffuse Staining for Activated NOTCH1 Correlates With NOTCH1 Mutation Status and Is Associated With Worse Outcome in Adenoid Cystic Carcinoma. Am J Surg Pathol 41:1473-1482
Aster, Jon C; Pear, Warren S; Blacklow, Stephen C (2017) The Varied Roles of Notch in Cancer. Annu Rev Pathol 12:245-275
Seegar, Tom C M; Killingsworth, Lauren B; Saha, Nayanendu et al. (2017) Structural Basis for Regulated Proteolysis by the ?-Secretase ADAM10. Cell 171:1638-1648.e7
Stein, Sarah J; Mack, Ethan A; Rome, Kelly S et al. (2016) Trib2 Suppresses Tumor Initiation in Notch-Driven T-ALL. PLoS One 11:e0155408

Showing the most recent 10 out of 61 publications