The overarching goal of this program is to elucidate fundamental properties of Notch signaling that are central to the pathogenesis of cancer. The Notch pathway is one of perhaps 15 or so signaling pathways that regulate development and tissue homeostasis in metazoan animals and which are frequently deranged in human diseases, including cancer. The clearest example of an oncogenic role for Notch is in T cell acute lymphoblastic leukemia/lymphoma (T-ALL), in which gain-of-function Notchl mutations are common. Notchl is a compelling rational therapeutic target in T-ALL, but attempts to treat T-ALL patients with Notch inhibitors to date have been unsuccessful. Thus, it is apparent that more basic and translational research is needed if Notch-directed therapies are to be effective. With this need in mind, Projects 1 and 2 of this Program have complementary aims focused on filling critical gaps in our basic understanding of how Notchl activates its target genes, which are ultimately responsible for driving T-ALL cell growth and survival. The specific overall objectives of Project 1 and Project 2 are: 1. To determine how Notchl regulates the genomes of T-ALL cells 2. To determine how Notchl regulates the genomes of normal thymocytes The mutations in Notchl that lead to T-ALL often result in ligand-independent proteolysis and receptor activation, but such mutations are rare to non-existent in other cancers. On the other hand, there is abundant evidence that ligand-mediated Notch receptor activation has important roles in cancer, both within tumor cell populations and benign stromal elements, such as endothelial cells and immune cells. Thus, understanding how ligands activate Notch receptors has broad cancer relevance, yet many basic aspects of the events underlying ligand-mediated Notch activation remain unknown. Project 3 will address major gaps in current knowledge by pursuing the following objectives: 3. To test the hypothesis that mechanical force is responsible for Notch receptor activation 4. To understand the molecular "logic" of ligand endocytosis, an event that is essential for activation of Notch receptors by ligands The goals of the program will be reached in part with the support of a new Bioinformatics Core (Core B) led by Dr. Shirley Liu, an investigator with a strong background in informatics approaches to understanding cancer epigenetics.

Public Health Relevance

The cohesive, highly interactive nature of our Program and the rich research environments of its host institutions will support the achievement of these objectives, which promise to address important questions of broad relevance to cancer and other diseases in which Notch signaling has been implicated. By meeting these objectives Program will drive conceptual and molecular advances needed for more precise and effective targeting of the Notch pathway in a variety of human maladies, including cancer.

National Institute of Health (NIH)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Mufson, R Allan
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Yashiro-Ohtani, Yumi; Wang, Hongfang; Zang, Chongzhi et al. (2014) Long-range enhancer activity determines Myc sensitivity to Notch inhibitors in T cell leukemia. Proc Natl Acad Sci U S A 111:E4946-53
Arnett, Kelly L; Blacklow, Stephen C (2014) Analyzing the nuclear complexes of Notch signaling by electrophoretic mobility shift assay. Methods Mol Biol 1187:231-45
Wang, Hongfang; Zang, Chongzhi; Taing, Len et al. (2014) NOTCH1-RBPJ complexes drive target gene expression through dynamic interactions with superenhancers. Proc Natl Acad Sci U S A 111:705-10
Dail, Monique; Wong, Jason; Lawrence, Jessica et al. (2014) Loss of oncogenic Notch1 with resistance to a PI3K inhibitor in T-cell leukaemia. Nature 513:512-6
Gerhardt, Dawson M; Pajcini, Kostandin V; D'altri, Teresa et al. (2014) The Notch1 transcriptional activation domain is required for development and reveals a novel role for Notch1 signaling in fetal hematopoietic stem cells. Genes Dev 28:576-93
Stoeck, Alexander; Lejnine, Serguei; Truong, Andrew et al. (2014) Discovery of biomarkers predictive of GSI response in triple-negative breast cancer and adenoid cystic carcinoma. Cancer Discov 4:1154-67
Tiyanont, Kittichoat; Wales, Thomas E; Siebel, Christian W et al. (2013) Insights into Notch3 activation and inhibition mediated by antibodies directed against its negative regulatory region. J Mol Biol 425:3192-204
Andrawes, Marie Blanke; Xu, Xiang; Liu, Hong et al. (2013) Intrinsic selectivity of Notch 1 for Delta-like 4 over Delta-like 1. J Biol Chem 288:25477-89
Chiang, Mark Y; Shestova, Olga; Xu, Lanwei et al. (2013) Divergent effects of supraphysiologic Notch signals on leukemia stem cells and hematopoietic stem cells. Blood 121:905-17
Blacklow, Stephen C (2013) Refining a Jagged edge. Structure 21:2100-1

Showing the most recent 10 out of 38 publications