The mass spectrometry core will provide proteomics and metabolomics resources to enable the three major P01 projects achieve success in uncovering the molecular mechanisms of Hamartoma syndromes and related cancers in the TSC1-TSC2 pathways for new drug targets and novel therapies. For proteomics, microcapillary tandem mass spectrometry (LC/MS/MS) services will include protein complex identification, post-translational modification (PTM) site mapping such as phosphorylation, ubiquitination, acetylation, etc. and the relative and absolute quantification of peptides/proteins including modified peptides using both stable isotope labeling (SILAC, ITRAQ, TMT) and label-free quantification [spectral counting, total ion current (TIC), multiple reaction monitoring (MRM)]. These studies will be performed from cell lines, xenografts in addition to in vivo tissue sources from mice and human tumors. For metabolomics, services will include polar metabolite profiling using selected reaction monitoring (SRM). We will profile cells, tumor tissues and biological fluids using both steady-state profiling and stable isotope labeled C glucose/glutamine and N flux experiments to determine which metabolic pathways are altered in cells harboring defects in the TSC pathways. For these studies, the core will use a Thermo Fisher Scientific hybrid linear Ion trap-Orbitrap XL-ETD mass spectrometer and an AB/SCIEX 5500 hybrid QTRAP triple quadrupole mass spectrometer. For phosphorylation studies, we will use a combination of CID and ETD fragmentation. The majority of these studies will take place from immunopurified (IP) protein complexes in the relevant TSC1-TSC2 pathways and from phosphopeptide enrichment with IMAC and TiOa. Using both hybrid ion trap-orbitrap mass spectrometry via spectral counting and average TIC in addition to triple quadrupole mass spectrometry via MRM, we will develop quantitative clinical assays that will aid in the mechanistic deduction of pathway activation. The core will further develop in-house software to improve our informatics infrastructure necessary to analyze the data from protein-protein interaction (PPI) and quantitative PTM studies. We will also utilize the drosophila PPI dataset from -300 bait-prey IP-LC/MS/MS experiments from 36 proteins in the insulin signaling pathway from the first granting period by overlapping the IP-MS data via reciprocal BLAST with mammalian PPI bait-prey datasets in the TSC1-TSC1 pathway to identify novel protein pathway members followed by biochemical validation for functional significance.

Public Health Relevance

The mass spectrometry core will provide proteomics and metabolomics services for the three major projects from cancer cells, tumor tissue and biological fluids using tandem mass spectrometry (LC/MS/MS). These services will support the discovery of novel pathways and drug targets for Hamartoma syndromes and related cancers stemming from defects in the tuberous sclerosis complex (TCS1-TSC2) genes.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-O)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Liu, Yang; Kwiatkowski, David J (2015) Combined CDKN1A/TP53 mutation in bladder cancer is a therapeutic target. Mol Cancer Ther 14:174-82
Lall, R; Ganapathy, S; Yang, M et al. (2014) Low-dose radiation exposure induces a HIF-1-mediated adaptive and protective metabolic response. Cell Death Differ 21:836-44
Menon, Suchithra; Dibble, Christian C; Talbott, George et al. (2014) Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156:771-85
Tchaicha, Jeremy H; Akbay, Esra A; Altabef, Abigail et al. (2014) Kinase domain activation of FGFR2 yields high-grade lung adenocarcinoma sensitive to a Pan-FGFR inhibitor in a mouse model of NSCLC. Cancer Res 74:4676-84
Bordoli, Mattia R; Yum, Jina; Breitkopf, Susanne B et al. (2014) A secreted tyrosine kinase acts in the extracellular environment. Cell 158:1033-44
Guo, Y; Chirieac, L R; Bueno, R et al. (2014) Tsc1-Tp53 loss induces mesothelioma in mice, and evidence for this mechanism in human mesothelioma. Oncogene 33:3151-60
Tyburczy, Magdalena E; Wang, Ji-An; Li, Shaowei et al. (2014) Sun exposure causes somatic second-hit mutations and angiofibroma development in tuberous sclerosis complex. Hum Mol Genet 23:2023-9
González-Billalabeitia, Enrique; Seitzer, Nina; Song, Su Jung et al. (2014) Vulnerabilities of PTEN-TP53-deficient prostate cancers to compound PARP-PI3K inhibition. Cancer Discov 4:896-904
Kraus, Daniel; Yang, Qin; Kong, Dong et al. (2014) Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature 508:258-62
Yang, Ping; Cornejo, Kristine M; Sadow, Peter M et al. (2014) Renal cell carcinoma in tuberous sclerosis complex. Am J Surg Pathol 38:895-909

Showing the most recent 10 out of 124 publications