The overarching goal of this Program Project proposal is to discover naturally products from diverse natural sources that can serve as anticancer drug leads. Project 2, located at the College of Pharmacy, University of Illinois at Chicago (UIC), is comprised of botanical, chemical and biological elements. The primary goals for Project 2 are the discovery of new lead anticancer compound candidates from cyanobacteria and providing tropical plant material for Project 1, housed at The Ohio State University (OSU). The underlying hypothesis for Project 2 is that the diverse natural product structures from cultured non-marine cyanobacteria and tropical plants will be a rich source for anticancer leads. To achieve the stated goals the specific aims for Project 2 are as follows: 1) to obtain, culture, extract, and prepare fractions of cyanobacterial strains. We will obtain 100 non-marine cyanobacterial strains per year. The strain collection will focus on samples collected in the continental U.S. Each strain will be cultured, extracted and prefractionated. The resulting fractions (-700 fractions/year) will be submitted for biological evaluation in the biological test systems available at Core A, Projects 1 and 3 as well as our pharmaceutical partner, Eisai. 2) to isolate and determine the structures of the active cyanobacterial metabolites. Fractions showing promising activity in the biological test systems will be analyzed by LC-MS-NMR to identify any known active compounds (dereplication). Active fractions expected to contain novel metabolites will be fractionated using assay guided fractionation to obtain pure natural product(s). Isolates will be structurally defined using microscale NMR and MS methodologies. Structurally-characterized compounds will be submitted for extensive evaluation in the biological test systems available in Core A, Projects 1 and 3 as well as our pharmaceutical partner, Eisai Research institute. In addition. Core B will perform chemical optimization and modifications of prioritized compounds. We will re-isolate larger amounts of any candidate compounds for further evaluation. 3) To acquire all plant materials that will be required by the proposed Program Project We will provide 300 fully documented plant samples per year to Project 1 for extraction and biologica evaluation. We will also re-collect plant materials for larger scale isolation, as needed.

Public Health Relevance

; The primary purpose of Project 2 of this program project is to discover new cancer chemotherapeutic leads from cyanobacteria and to supply plants from tropical rainforests for further investigation in Project 1. The proposed research will impact human health by creating new lead compounds for the development of drugs to treat cancer. Some of the compounds discovered may work by new mechanism of action, thus increasing our understanding how to treat this disease.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-C (O1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Ohio State University
United States
Zip Code
El-Elimat, Tamam; Raja, Huzefa A; Figueroa, Mario et al. (2015) Sorbicillinoid analogs with cytotoxic and selective anti-Aspergillus activities from Scytalidium album. J Antibiot (Tokyo) 68:191-6
Yong, Yeonjoong; Pan, Li; Ren, Yulin et al. (2014) Assay development for the discovery of semaphorin 3B inducing agents from natural product sources. Fitoterapia 98:184-91
Ren, Yulin; Yuan, Chunhua; Qian, Yanrong et al. (2014) Constituents of an extract of Cryptocarya rubra housed in a repository with cytotoxic and glucose transport inhibitory effects. J Nat Prod 77:550-6
Pan, Li; Woodard, John L; Lucas, David M et al. (2014) Rocaglamide, silvestrol and structurally related bioactive compounds from Aglaia species. Nat Prod Rep 31:924-39
Deng, Youcai; Chu, Jianhong; Ren, Yulin et al. (2014) The natural product phyllanthusmin C enhances IFN-? production by human NK cells through upregulation of TLR-mediated NF-?B signaling. J Immunol 193:2994-3002
El-Elimat, Tamam; Raja, Huzefa A; Day, Cynthia S et al. (2014) Greensporones: resorcylic acid lactones from an aquatic Halenospora sp. J Nat Prod 77:2088-98
Pérez, Lynette Bueno; Still, Patrick C; Naman, C Benjamin et al. (2014) Investigation of Vietnamese plants for potential anticancer agents. Phytochem Rev 13:727-739
Ren, Yulin; Lantvit, Daniel D; Deng, Youcai et al. (2014) Potent cytotoxic arylnaphthalene lignan lactones from Phyllanthus poilanei. J Nat Prod 77:1494-504
Luo, Shangwen; Kang, Hahk-Soo; Krunic, Aleksej et al. (2014) Carbamidocyclophanes F and G with Anti-Mycobacterium tuberculosis Activity from the Cultured Freshwater Cyanobacterium Nostoc sp. Tetrahedron Lett 55:686-689
Bueno Pérez, Lynette; Pan, Li; Muñoz Acuña, Ulyana et al. (2014) Caeruleanone A, a rotenoid with a new arrangement of the D-ring from the fruits of Millettia caerulea. Org Lett 16:1462-5

Showing the most recent 10 out of 65 publications