The three components of this Program Project will use novel approaches to study the role of Pten as a tumor suppressor in melanoma development and progression. While about 30% of melanoma harbors inactive form of Pten, over 50% have been reported to carry a constitutively active form of PI3K/Akt, pointing to the importance of this pathway in melanomas. It is anticipated that the studies proposed in this application will provide important new mechanistic insight into the role of Pten/Akt signaling cascade in melanoma development and progression while identifying new pharmacological targets and the developing drug candidates with potent anti-tumor activity. The use of both cell culture and animal models will be essential to the success of these programmatic plans. The primary goals of Core C are to support all Projects as follows: 1) To provide proven tools and expertise in assessment of expression signatures using a series of antibodies against proteins involved in the Pten signaling pathway;2) to use monospecific commercial or "homemade" antibodies to perform an assessment of genes / proteins discovered and characterized in the course of this PPG. These genes and proteins will serve as potential markers for diagnosis and monitoring of Pten-inactive tumors. This analysis will be carried out on >30 melanoma tumor derived cell lines in which the status of Pten is known, and on TMAs of melanoma patients that are available to us as part of collaboration with David Rimm's group at Yale university;3) to provide expert pathological support for studies using experimental in vivo and in vitro models;4) to ensure that optimal biostatistical analysis is used to validate the diagnostic data that are obtained;5) To provide in vitro tumor cell models to serve the needs of all program components. These models include both 2-dimensional melanoma tumor cell monolayers, as well as 3-dimensional cultures of melanoma cell spheroids which in some cases may more faithfully mimic the in v/Vo tumor cell environment and its response to drug treatment;6) to provide in vivo tumor models utilizing subcutaneous human xenografts in nude mice (Pten-negative and reconstituted human melanoma cells of the UACC903 series, as well as WM35 and WM35/Akt over- expressing cells) that allow quantitative analysis of tumor growth and metastasis. These standardized models will allow reliable comparisons of drug testing and other types of data among programmatic components.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA128814-05
Application #
8528365
Study Section
Special Emphasis Panel (ZCA1-RPRB-O)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
5
Fiscal Year
2013
Total Cost
$321,408
Indirect Cost
$156,583
Name
Sanford-Burnham Medical Research Institute
Department
Type
DUNS #
020520466
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Placzek, Andon N; Prisco, Gonzalo Viana Di; Khatiwada, Sanjeev et al. (2016) eIF2α-mediated translational control regulates the persistence of cocaine-induced LTP in midbrain dopamine neurons. Elife 5:
Bai, Yongsheng; Kinne, Jeff; Donham, Brandon et al. (2016) Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data. BMC Genomics 17 Suppl 7:503
Wang, Miao; Kaufman, Randal J (2016) Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529:326-35
Han, Jaeseok; Kaufman, Randal J (2016) The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res 57:1329-38
Feng, Yongmei; Pinkerton, Anthony B; Hulea, Laura et al. (2015) SBI-0640756 Attenuates the Growth of Clinically Unresponsive Melanomas by Disrupting the eIF4F Translation Initiation Complex. Cancer Res 75:5211-8
Jeon, Young Joo; Khelifa, Sihem; Ratnikov, Boris et al. (2015) Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. Cancer Cell 27:354-69
Qi, Jianfei; Ronai, Ze'ev A (2015) Dysregulation of ubiquitin ligases in cancer. Drug Resist Updat 23:1-11
Lau, E; Sedy, J; Sander, C et al. (2015) Transcriptional repression of IFNβ1 by ATF2 confers melanoma resistance to therapy. Oncogene 34:5739-48
Lau, Eric; Feng, Yongmei; Claps, Giuseppina et al. (2015) The transcription factor ATF2 promotes melanoma metastasis by suppressing protein fucosylation. Sci Signal 8:ra124
Senft, Daniela; Ronai, Ze'ev A (2015) UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci 40:141-8

Showing the most recent 10 out of 39 publications