PROJECT 5: OPTIMIZATION OF MART-1 TCR GENE TRANSFER FOR ANTI-MELANOMA IMMUNITY ABSTRACT TCR gene transfer is a feasible approach for treating metastatic melanoma and greatly expands the scope of adoptive transfer for cancer immunotherapy. In light of the low clinical response rate to standard therapies, further optimization of this therapeutic modality is urgently needed. Our long-term goal is to optimize the components involved in TCR gene transfer so that this treatment can be translated into a reliable therapeutic modality. Our preliminary studies have identified a high affinity MART-1 TCR from a patient with an unusually high population of high affinity MART-1 specific T cells. The experimental focus of this proposal is to evaluate various strategies to improve TCR gene transfer. The first specific aim is to optimize the MART-1 TCR for an enhanced anti-melanoma response. Success of this aim will enable us to overcome the intrinsic problem of TCR mispairing and obtain an engineered MART-1 TCR with improved affinity. The second specific aim is to optimize T cells that have been modified by a MART-1 TCR to yield an enhanced anti-melanoma response, which will allow us to validate the proposed genetic modification strategies for building better T cells and develop a novel means to generate optimal MART-1 T cells in vitro for adoptive transfer. The third specific aim is to optimize a lentiviral delivery system for TCR gene transfer. Accomplishment of this aim will provide us with new versions of lentiviral vectors with superior abilities to genetically modify mature T cells, hematopoietic stem cells and embryonic stem cells. Taken together, these novel studies will contribute significantly to the further success of the next wave of investigation into TCR gene transfer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA132681-04
Application #
8448003
Study Section
Special Emphasis Panel (ZCA1-RPRB-J)
Project Start
Project End
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
4
Fiscal Year
2013
Total Cost
$274,100
Indirect Cost
Name
California Institute of Technology
Department
Type
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Liu, Yarong; Xiao, Liang; Joo, Kye-Il et al. (2014) In situ modulation of dendritic cells by injectable thermosensitive hydrogels for cancer vaccines in mice. Biomacromolecules 15:3836-45
Javed, Muhammad Rashed; Chen, Supin; Kim, Hee-Kwon et al. (2014) Efficient radiosynthesis of 3'-deoxy-3'-18F-fluorothymidine using electrowetting-on-dielectric digital microfluidic chip. J Nucl Med 55:321-8
Liu, Yarong; Fang, Jinxu; Joo, Kye-Il et al. (2014) Codelivery of chemotherapeutics via crosslinked multilamellar liposomal vesicles to overcome multidrug resistance in tumor. PLoS One 9:e110611
Gschweng, Eric H; McCracken, Melissa N; Kaufman, Michael L et al. (2014) HSV-sr39TK positron emission tomography and suicide gene elimination of human hematopoietic stem cells and their progeny in humanized mice. Cancer Res 74:5173-83
Liu, Yarong; Fang, Jinxu; Kim, Yu-Jeong et al. (2014) Codelivery of doxorubicin and paclitaxel by cross-linked multilamellar liposome enables synergistic antitumor activity. Mol Pharm 11:1651-61
Chodon, Thinle; Comin-Anduix, BegoƱa; Chmielowski, Bartosz et al. (2014) Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin Cancer Res 20:2457-65
Ribas, Antoni; Tumeh, Paul C (2014) The future of cancer therapy: selecting patients likely to respond to PD1/L1 blockade. Clin Cancer Res 20:4982-4
Gschweng, Eric; De Oliveira, Satiro; Kohn, Donald B (2014) Hematopoietic stem cells for cancer immunotherapy. Immunol Rev 257:237-49
Liu, Yarong; Joo, Kye-Il; Lei, Yuning et al. (2014) Visualization of intracellular pathways of engineered baculovirus in mammalian cells. Virus Res 181:81-91
Atefi, Mohammad; Avramis, Earl; Lassen, Amanda et al. (2014) Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma. Clin Cancer Res 20:3446-57

Showing the most recent 10 out of 30 publications