PROJECT 5: OPTIMIZATION OF MART-1 TCR GENE TRANSFER FOR ANTI-MELANOMA IMMUNITY ABSTRACT TCR gene transfer is a feasible approach for treating metastatic melanoma and greatly expands the scope of adoptive transfer for cancer immunotherapy. In light of the low clinical response rate to standard therapies, further optimization of this therapeutic modality is urgently needed. Our long-term goal is to optimize the components involved in TCR gene transfer so that this treatment can be translated into a reliable therapeutic modality. Our preliminary studies have identified a high affinity MART-1 TCR from a patient with an unusually high population of high affinity MART-1 specific T cells. The experimental focus of this proposal is to evaluate various strategies to improve TCR gene transfer. The first specific aim is to optimize the MART-1 TCR for an enhanced anti-melanoma response. Success of this aim will enable us to overcome the intrinsic problem of TCR mispairing and obtain an engineered MART-1 TCR with improved affinity. The second specific aim is to optimize T cells that have been modified by a MART-1 TCR to yield an enhanced anti-melanoma response, which will allow us to validate the proposed genetic modification strategies for building better T cells and develop a novel means to generate optimal MART-1 T cells in vitro for adoptive transfer. The third specific aim is to optimize a lentiviral delivery system for TCR gene transfer. Accomplishment of this aim will provide us with new versions of lentiviral vectors with superior abilities to genetically modify mature T cells, hematopoietic stem cells and embryonic stem cells. Taken together, these novel studies will contribute significantly to the further success of the next wave of investigation into TCR gene transfer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-J)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
California Institute of Technology
United States
Zip Code
Fendler, Wolfgang Peter; Barrio, Martin; Spick, Claudio et al. (2016) 68Ga-DOTATATE PET/CT interobserver agreement for neuroendocrine tumor assessments: results from a prospective study on 50 patients. J Nucl Med :
Boschi, Stefano; Lee, Jason T; Beykan, Seval et al. (2016) Synthesis and preclinical evaluation of an Al(18)F radiofluorinated GLU-UREA-LYS(AHX)-HBED-CC PSMA ligand. Eur J Nucl Med Mol Imaging 43:2122-2130
Bethune, Michael T; Gee, Marvin H; Bunse, Mario et al. (2016) Domain-swapped T cell receptors improve the safety of TCR gene therapy. Elife 5:
Bluemel, Christina; Krebs, Markus; Polat, Bülent et al. (2016) 68Ga-PSMA-PET/CT in Patients With Biochemical Prostate Cancer Recurrence and Negative 18F-Choline-PET/CT. Clin Nucl Med 41:515-21
Fiacco, Stephen V; Kelderhouse, Lindsay E; Hardy, Amanda et al. (2016) Directed Evolution of Scanning Unnatural-Protease-Resistant (SUPR) Peptides for in Vivo Applications. Chembiochem 17:1643-51
Fendler, Wolfgang Peter; Czernin, Johannes; Herrmann, Ken et al. (2016) Variations in PET/MRI Operations: Results from an International Survey Among 39 Active Sites. J Nucl Med 57:2016-2021
Spick, Claudio; Herrmann, Ken; Czernin, Johannes (2016) 18F-FDG PET/CT and PET/MRI Perform Equally Well in Cancer: Evidence from Studies on More Than 2,300 Patients. J Nucl Med 57:420-30
Fang, Jinxu; Hu, Biliang; Li, Si et al. (2016) A multi-antigen vaccine in combination with an immunotoxin targeting tumor-associated fibroblast for treating murine melanoma. Mol Ther Oncolytics 3:16007
Mok, Stephen; Tsoi, Jennifer; Koya, Richard C et al. (2015) Inhibition of colony stimulating factor-1 receptor improves antitumor efficacy of BRAF inhibition. BMC Cancer 15:356
Herrmann, Ken; Bluemel, Christina; Weineisen, Martina et al. (2015) Biodistribution and radiation dosimetry for a probe targeting prostate-specific membrane antigen for imaging and therapy. J Nucl Med 56:855-61

Showing the most recent 10 out of 58 publications