Dr. Clarke will administer this core, assisted by Kari Trevino, Program Manager. This core will coordinate the different aspects of this program project. The following are the major administrative functions. Ms. Trevino is responsible for the administration and grants management aspects of the program. She will coordinate meetings, arrange for project-specific travel, track expenditures, assure that project expenditures meet NIH policy rules and are correctly allocated, and finally advise and inform the PI on regulatory matters. Annual progress reports and financial summaries and final document preparation are the responsibility of the Administrative Core. The Pi's and CoPIs of each individual project will be responsible for the specific aims in their proposals. Briefly, Dr. Clarke is PI of Project 1 and the animal core. He will be responsible for isolation of the solid tumor cancer stem cells and the xenograft models. Dr. Weissman is the leader of Project 2 and will be responsible for isolation of blood stem cells. Dr. Quake is PI of Project 3 and will be responsible for the microfluidic analyses. He will do the single cell arrays and the miniaturized tissue culture analyses. Dr. Altman will lead the bioinformatics core and will analyze the data generated by the Quake laboratory.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA139490-04
Application #
8375341
Study Section
Special Emphasis Panel (ZCA1-SRRB-C)
Project Start
Project End
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
4
Fiscal Year
2012
Total Cost
$52,609
Indirect Cost
$19,071
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Cai, Shang; Kalisky, Tomer; Sahoo, Debashis et al. (2017) A Quiescent Bcl11b High Stem Cell Population Is Required for Maintenance of the Mammary Gland. Cell Stem Cell 20:247-260.e5
Jeong, Youngtae; Hoang, Ngoc T; Lovejoy, Alexander et al. (2017) Role of KEAP1/NRF2 and TP53 Mutations in Lung Squamous Cell Carcinoma Development and Radiation Resistance. Cancer Discov 7:86-101
Betancur, Paola A; Abraham, Brian J; Yiu, Ying Y et al. (2017) A CD47-associated super-enhancer links pro-inflammatory signalling to CD47 upregulation in breast cancer. Nat Commun 8:14802
Krampitz, Geoffrey Wayne; George, Benson M; Willingham, Stephen B et al. (2016) Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors. Proc Natl Acad Sci U S A 113:4464-9
Weiskopf, Kipp; Schnorr, Peter J; Pang, Wendy W et al. (2016) Myeloid Cell Origins, Differentiation, and Clinical Implications. Microbiol Spectr 4:
Weiskopf, Kipp; Jahchan, Nadine S; Schnorr, Peter J et al. (2016) CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. J Clin Invest 126:2610-20
Dalerba, Piero; Sahoo, Debashis; Paik, Soonmyung et al. (2016) CDX2 as a Prognostic Biomarker in Stage II and Stage III Colon Cancer. N Engl J Med 374:211-22
Weiskopf, Kipp; Anderson, Katie L; Ito, Daisuke et al. (2016) Eradication of Canine Diffuse Large B-Cell Lymphoma in a Murine Xenograft Model with CD47 Blockade and Anti-CD20. Cancer Immunol Res 4:1072-1087
Cheah, Ming T; Chen, James Y; Sahoo, Debashis et al. (2015) CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A 112:4725-30
Feng, Mingye; Chen, James Y; Weissman-Tsukamoto, Rachel et al. (2015) Macrophages eat cancer cells using their own calreticulin as a guide: roles of TLR and Btk. Proc Natl Acad Sci U S A 112:2145-50

Showing the most recent 10 out of 41 publications