The long-term goal of this Program Project is to understand, in precise quantitative terms, how individual cancer cells and tumors respond to drug treatment, from target engagement to induction of apoptosis to eventual tumor regression. This will improve patient care by allowing improved prediction of drug responses and rational design of combination therapies, and by identifying targets for better future drugs. We will address this goal in the context of two drug classes that trigger apoptosis in cancer cells, anti-mitotic drugs, and targeted apoptosis inducers, including TRAIL and ABT737. Experiments will be performed in cell culture and mouse tumors.
We aim for an understanding of the cellular response to these drugs that is (i) mechanistic in explaining cellular phenotypes in terms of interactions among specific proteins and other bio-molecules (ii) quantitative in applying mass-action kinetics and other mathematical formalisms to predicting the behavior of ensembles of interacting proteins from knowledge of their individual biochemistry (iii) probabilistic in accounting for the variability from one cell to the next in responses to drugs with the attendant likelihood that only a fraction of tumor cells will arrest or die in response to treatment with a chemotherapeutic drug (iv) post-genomic in analyzing diverse cell lines (and ultimately patient samples) with knowledge of their genetic differences and with the possibility of applying powerful knock-out/in and RNAi strategies to alter genotype (v) integrative in assuming that determinants of drug response are multi-factorial and that multiple interacting pathways rather than single genes or proteins must be studied. We will address these goals in four Program Specific Aims:
In aim 1 we will determine the molecular mechanisms that regulate MOMP in response to anti-mitotic drugs and ABT737.
In aim 2 we will investigate the causes of variation in cell responses to anti-mitotics and targeted inducers of apoptosis.
In aim 3 we will ask to what extent drug responses are the same in cell culture and mouse tumors, using intravital imaging and other methods.
In aim 4 we will pursue several approaches towards translating mechanistic understanding from aims 1-3 into improved patient care.

Public Health Relevance

Cancer chemotherapy drugs only work for some patients, and we often do not know why. We will investigate how drugs kill cancer cells, and why drugs kill some cancer cells but not others. The knowledge we gain will help us predict which patients will be cured by a particular dnjg or drug combination, so the most effective drugs can be selected for that patient. It will also help us design more effective future drugs.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA139980-03
Application #
8270562
Study Section
Special Emphasis Panel (ZCA1-RPRB-O (O1))
Program Officer
Arya, Suresh
Project Start
2010-06-01
Project End
2015-05-31
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
3
Fiscal Year
2012
Total Cost
$1,808,544
Indirect Cost
$508,771
Name
Harvard University
Department
Chemistry
Type
Schools of Medicine
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
Sharma, Mayuri; Kamil, Jeremy P; Coughlin, Margaret et al. (2014) Human cytomegalovirus UL50 and UL53 recruit viral protein kinase UL97, not protein kinase C, for disruption of nuclear lamina and nuclear egress in infected cells. J Virol 88:249-62
Laughney, Ashley M; Kim, Eunha; Sprachman, Melissa M et al. (2014) Single-cell pharmacokinetic imaging reveals a therapeutic strategy to overcome drug resistance to the microtubule inhibitor eribulin. Sci Transl Med 6:261ra152
Kim, Eunha; Yang, Katherine S; Giedt, Randy J et al. (2014) Red Si-rhodamine drug conjugates enable imaging in GFP cells. Chem Commun (Camb) 50:4504-7
Lee, Sungon; Vinegoni, Claudio; Sebas, Matthew et al. (2014) Automated motion artifact removal for intravital microscopy, without a priori information. Sci Rep 4:4507
Turetsky, Anna; Kim, Eunha; Kohler, Rainer H et al. (2014) Single cell imaging of Bruton's tyrosine kinase using an irreversible inhibitor. Sci Rep 4:4782
Lee, Robin E C; Walker, Sarah R; Savery, Kate et al. (2014) Fold change of nuclear NF-?B determines TNF-induced transcription in single cells. Mol Cell 53:867-79
Pan, Rongqing; Hogdal, Leah J; Benito, Juliana M et al. (2014) Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov 4:362-75
Foijer, Floris; Xie, Stephanie Z; Simon, Judith E et al. (2014) Chromosome instability induced by Mps1 and p53 mutation generates aggressive lymphomas exhibiting aneuploidy-induced stress. Proc Natl Acad Sci U S A 111:13427-32
Krukenberg, Kristin A; Jiang, Ruomu; Steen, Judith A et al. (2014) Basal activity of a PARP1-NuA4 complex varies dramatically across cancer cell lines. Cell Rep 8:1808-18
Xia, X; Owen, M S; Lee, R E C et al. (2014) Cell-to-cell variability in cell death: can systems biology help us make sense of it all? Cell Death Dis 5:e1261

Showing the most recent 10 out of 37 publications