The overall scientific goal of this ambitious program project is to develop highly innovative methods for cancer clinical trials that can hasten successful introduction of effective new therapies into practice. The method of approach is to leverage recent advances in statistical and computational science to create new clinical trial designs and data analysis tools that resolve many of the key scientific limitations of current clinical trial methodology. The projects focus on practical design and analysis problems in Phase II and Phase 111 clinical trials, the problem of missing data and efficient use of prognostic information, postmarketing surveillance and comparative effectiveness research using clinical trial data, pharmacogenetics and individualized therapies, and the potential of dynamic treatment regimens to improve cancer treatment. The proposed clinical trial design and analysis innovations have the potential to change the prevailing clinical trial paradigm and greatly increase the rate of discovery and translation of new treatments into clinical practice. Our multi-institutional approach includes an effective and energetic process for intense, coordinated implementation, communication and dissemination of results, including developing new software for practical implementation of the newly developed methods. Our comprehensive and novel approach will lead to significant improvements in cancer clinical trial practice that will result in improved health of cancer patients.

Public Health Relevance

The proposed program project aims to dramatically improve the efficiency of the cancer clinical trial process in order to improve the health and longevity of cancer patients. This is extremely important to public health since almost all biomedical advances in cancer treatment must pass through the clinical trial process before becoming accepted clinical practice.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA142538-04
Application #
8462924
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (O1))
Program Officer
Wu, Roy S
Project Start
2010-04-01
Project End
2015-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
4
Fiscal Year
2013
Total Cost
$2,029,914
Indirect Cost
$289,755
Name
University of North Carolina Chapel Hill
Department
Biostatistics & Other Math Sci
Type
Schools of Public Health
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Jung, Sin-Ho; Lee, Ho Yun; Chow, Shein-Chung (2018) Statistical Methods for Conditional Survival Analysis. J Biopharm Stat 28:927-938
Jiang, Yuchao; Wang, Rujin; Urrutia, Eugene et al. (2018) CODEX2: full-spectrum copy number variation detection by high-throughput DNA sequencing. Genome Biol 19:202
Kim, Soyoung; Zeng, Donglin; Cai, Jianwen (2018) Analysis of multiple survival events in generalized case-cohort designs. Biometrics :
Chung, Yunro; Ivanova, Anastasia; Hudgens, Michael G et al. (2018) Partial likelihood estimation of isotonic proportional hazards models. Biometrika 105:133-148
Liang, Shuhan; Lu, Wenbin; Song, Rui (2018) Deep advantage learning for optimal dynamic treatment regime. Stat Theory Relat Fields 2:80-88
Chen, Xiaolin; Cai, Jianwen (2018) Reweighted estimators for additive hazard model with censoring indicators missing at random. Lifetime Data Anal 24:224-249
Yang, Yuchen; Huh, Ruth; Culpepper, Houston W et al. (2018) SAFE-clustering: Single-cell Aggregated (From Ensemble) Clustering for Single-cell RNA-seq Data. Bioinformatics :
Nasution, Marlina D; Wang, Xiaofei (2018) Statistical issues and advances in cancer precision medicine research. J Biopharm Stat 28:215-216
Wu, Yuan; Chambers, Christina D; Xu, Ronghui (2018) Semiparametric sieve maximum likelihood estimation under cure model with partly interval censored and left truncated data for application to spontaneous abortion. Lifetime Data Anal :
Ibrahim, Joseph G; Kim, Sungduk; Chen, Ming-Hui et al. (2018) Bayesian multivariate skew meta-regression models for individual patient data. Stat Methods Med Res :962280218801147

Showing the most recent 10 out of 549 publications