The Administrative Core (Core A) is responsible for organizing the program investigators and staff into an effective and well-coordinated team to develop and implement the statistical methods for cancer clinical trials proposed in the research projects to improve the health of cancer patients. This program is integrated across three institutions whith a lead PD/Pl at one institution (UNC-CH) and two additional PD/PIs at the other two institutions (NCSU and Duke). These three PD/PIs form an executive Committee with overall responsibility for the management and administration of the program. Each institution has an additional co-PD/PI to assist the PD/PIs with both the overall and intra-institutional administration of the program project. The Executive Committee, three co-PD/PIs. and individual project leaders form a Steering Committee which provides overall scientific guidance for the program. An External Advisory Committee of experts provides feedback to the Steering Committee on the goals and progress of the program during an annual retreat. Communication and collaboration between project investigators is facilitated with a program project wiki. Communication and dissemination of new results and software are aided with a program project web page. The matrix leadership structure of Core A maximizes the scientific integration of this multi-disciplinary and trans-institutional collaboration.

Public Health Relevance

The Administrative Core (Core A) is essential to the success of the proposed project since it coordinates all administration and provides leadership for the five projects, three cores and three institutions involved in this program project. The administrative component is necessary to facilitate the science of this program project and to achieve the overall program aims, to develop new statistical methods that will improve the health of cancer patients.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-7)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Chapel Hill
United States
Zip Code
Wang, Zhi; Maity, Arnab; Luo, Yiwen et al. (2015) Complete effect-profile assessment in association studies with multiple genetic and multiple environmental factors. Genet Epidemiol 39:122-33
Geng, Yuan; Zhang, Hao Helen; Lu, Wenbin (2015) On optimal treatment regimes selection for mean survival time. Stat Med 34:1169-84
Liu, Yulun; Chen, Yong; Chu, Haitao (2015) A unification of models for meta-analysis of diagnostic accuracy studies without a gold standard. Biometrics 71:538-47
Chen, Qingxia; Zeng, Donglin; Ibrahim, Joseph G et al. (2015) Quantifying the average of the time-varying hazard ratio via a class of transformations. Lifetime Data Anal 21:259-79
Viele, Kert; Berry, Scott; Neuenschwander, Beat et al. (2014) Use of historical control data for assessing treatment effects in clinical trials. Pharm Stat 13:41-54
Wang, Xin; Zhang, Daowen; Tzeng, Jung-Ying (2014) Pathway-guided identification of gene-gene interactions. Ann Hum Genet 78:478-91
Chen, Ming-Hui; Ibrahim, Joseph G; Zeng, Donglin et al. (2014) Bayesian design of superiority clinical trials for recurrent events data with applications to bleeding and transfusion events in myelodyplastic syndrome. Biometrics 70:1003-13
Lin, Ja-An; Zhu, Hongtu; Mihye, Ahn et al. (2014) Functional-mixed effects models for candidate genetic mapping in imaging genetic studies. Genet Epidemiol 38:680-91
Zhang, Jing; Carlin, Bradley P; Neaton, James D et al. (2014) Network meta-analysis of randomized clinical trials: reporting the proper summaries. Clin Trials 11:246-62
Zeng, Donglin; Lin, D Y (2014) Efficient Estimation of Semiparametric Transformation Models for Two-Phase Cohort Studies. J Am Stat Assoc 109:371-383

Showing the most recent 10 out of 133 publications