The introduction of cord blood (CB) as an alternative graft source for patients without a human leukocyte antigen (HLA) matched donor was a clear breakthrough in the field of stem cell transplantation. Yet, consistently low doses of CB progenitor cells, resulting in delayed engraftment and immune reconstitution, unacceptable rates of infection, and high rates of relapse in CB recipients with cancer, have restricted the use of this procedure, especially in adults. Hence, the long-range goal of this proposal is to improve the outcome of CB transplantation by translating compelling laboratory findings into clinical trials, all within the framework of a multidisciplinary P01grant. The investigators in this program, representing 4 research projects and 4 Core services, have strong records of collaborative investigation in cancer immunology, viral immunology, CB transplantation, adoptive T-cell therapy, and stem cell biology - predicting extensive (and synergistic) interactions in pursuit of the goals outlined here. Project 1 will test the hypothesis that CB progenitors expanded on marrow stromal cells prior to infusion will engraft more rapidly than unmanipulated CB cells, and will further evaluate treatment of CB progenitors with fucosyltransferase as a novel means to improve bone marrow homing and engraftment. Project 2 asks if the infusion of CB-derived cytotoxic T cells (CTLs) targeting multiple viruses will provide broad protection against post-transplant viral infections, while Project 3 will direct the specificity of these virus-specific CTLs, using a chimeric antigen receptor (CAR), to the tumor-associated antigen CD19 in an effort to target malignant B cells as well as viruses. Finally, in Project 4, the ability of CB-derived CTLs to recognize the PR1 antigen aberrantly expressed on myeloid leukemias will be exploited to determine the feasibility and potential efficacy of PRI-specific CTL therapy in patients with myeloid leukemia undergoing CB transplantation. Ultimately, the information generated through this P01mechanism should yield a single, comprehensive plan of CB transplantation that will overcome most current limitations of this procedure, making it a realistic option for larger numbers of adult and childhood cancer patients.

Public Health Relevance

Cord blood transplantation is a potentially useful treatment for leukemias and other hematologic malignancies, but its effectiveness has been limited by delayed engraftment, poor immune reconstitution, viral infections and relapse of the primary disease. The studies proposed in this application are designed to improve the outcome of this procedure so that it can be used more widely in cancer patients without other therapeutic options.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-J (J1))
Program Officer
Merritt, William D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
Other Domestic Higher Education
United States
Zip Code
Cruz, Conrad R Y; Bollard, Catherine M (2017) Adoptive Immunotherapy For Leukemia With Ex vivo Expanded T Cells. Curr Drug Targets 18:271-280
Kerros, Celine; Tripathi, Satyendra C; Zha, Dongxing et al. (2017) Neuropilin-1 mediates neutrophil elastase uptake and cross-presentation in breast cancer cells. J Biol Chem 292:10295-10305
Kolonin, Mikhail G; Sergeeva, Anna; Staquicini, Daniela I et al. (2017) Interaction between Tumor Cell Surface Receptor RAGE and Proteinase 3 Mediates Prostate Cancer Metastasis to Bone. Cancer Res 77:3144-3150
Alsuliman, Abdullah; Muftuoglu, Muharrem; Khoder, Ahmad et al. (2017) A subset of virus-specific CD161+ T cells selectively express the multidrug transporter MDR1 and are resistant to chemotherapy in AML. Blood 129:740-758
Peters, Haley L; Tripathi, Satyendra C; Kerros, Celine et al. (2017) Serine Proteases Enhance Immunogenic Antigen Presentation on Lung Cancer Cells. Cancer Immunol Res 5:319-329
Houghtelin, Amy; Bollard, Catherine M (2017) Virus-Specific T Cells for the Immunocompromised Patient. Front Immunol 8:1272
Robinson, Simon N; Thomas, Michael W; Simmons, Paul J et al. (2017) Non-fucosylated CB CD34+ cells represent a good target for enforced fucosylation to improve engraftment following cord blood transplantation. Cytotherapy 19:285-292
Dave, Hema; Luo, Min; Blaney, J W et al. (2017) Toward a Rapid Production of Multivirus-Specific T Cells Targeting BKV, Adenovirus, CMV, and EBV from Umbilical Cord Blood. Mol Ther Methods Clin Dev 5:13-21
Naik, Swati; Nicholas, Sarah K; Martinez, Caridad A et al. (2016) Adoptive immunotherapy for primary immunodeficiency disorders with virus-specific T lymphocytes. J Allergy Clin Immunol 137:1498-1505.e1
Nesher, Lior; Shah, Dimpy P; Ariza-Heredia, Ella J et al. (2016) Utility of the Enzyme-Linked Immunospot Interferon-?-Release Assay to Predict the Risk of Cytomegalovirus Infection in Hematopoietic Cell Transplant Recipients. J Infect Dis 213:1701-7

Showing the most recent 10 out of 95 publications