We will develop and validate new breast cancer risk prediction models that include familial factors related to genetic risk, personal risk factors unrelated to genetic risk, qualitative breast density measures, novel quantitative dense tissue measures and types of dense tissue structure, endogenous sex hormone levels and 18 candidate single-nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS). In addition, we will assess the comparative effectiveness of risk-based versus age-based mammography screening on age to start and stop screening and how often to screen. We will build on the existing Breast Cancer Surveillance Consortium (BCSC) infrastructure, expanding data collection and constructing two cohorts that will be the basis for developing and validating new breast cancer risk prediction models (Specific Aim 1). Additional data collected will be detailed breast and ovarian cancer family history;an automated measure of dense breast volume;development and validation of new quantitative density structure measures based on image texture features;endogenous sex hormone levels; and, genetic profiles. Using the existing and expanded BCSC infrastructure, we will develop and validate new breast cancer risk prediction models (Specific Aim 2) using traditional and novel risk factors for up to 1,000,000 women and 20,000 breast cancers, generating separate 5-year breast cancer risk estimates for: (1) all-type breast cancers (2) specific invasive cancer sub-types including estrogen receptor positive (ER+), ER-negative (ER-), HER2/neu-oncoprotein positive (HER2+), triple-negative (ER-/PR-/HER2-) and HER2+/ER- and ductal carcinoma in situ, and (3) women aged 35-49 and 50-79 years and those white, black, Hispanic and Asian, We will determine the accuracy of the new risk prediction models to classify women into Low (<1%), Average (1-1.66%), Intermediate (1.67%-2.49%), High (2.5%-3,99%) and Very high (>4%) 5-year risk groups and compare our new models to the BCSC Breast Density 5-year risk model using reclassification methods. We will also explore whether genetic variants improve the discriminatory accuracy of prediction models for women with intermediate-to-high breast cancer risk and if endogenous sex hormone levels improve prediction in postmenopausal women, Lastly, we will apply the risk estimates from prediction models in Specific Aim 2 to three established breast cancer simulation models to compare risk-targeted mammography screening at various starting and stopping ages and intervals, with current age-based guidelines to assess the benefits (e.g., percent mortality reductions and life years gained), harms (e,g., false-positive tests and unnecessary biopsies), and costs (Specific Aim 3) of each strategy.

Public Health Relevance

These studies will develop and validate new breast cancer risk prediction models and show whether predicted risk levels are useful for determining the appropriate ages to start and stop screening mammography, and how frequently to screen to give the best outcomes. Our findings will inform national guidelines by determining how screening strategies can be further personalized based on breast cancer risk.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Group Health Cooperative
United States
Zip Code
Sprague, Brian L; Arao, Robert F; Miglioretti, Diana L et al. (2017) National Performance Benchmarks for Modern Diagnostic Digital Mammography: Update from the Breast Cancer Surveillance Consortium. Radiology 283:59-69
Chen, Youdinghuan; Marotti, Jonathan D; Jenson, Erik G et al. (2017) Concordance of DNA methylation profiles between breast core biopsy and surgical excision specimens containing ductal carcinoma in situ (DCIS). Exp Mol Pathol 103:78-83
Haas, Jennifer S; Baer, Heather J; Eibensteiner, Katyuska et al. (2017) A Cluster Randomized Trial of a Personalized Multi-Condition Risk Assessment in Primary Care. Am J Prev Med 52:100-105
Lam, Diana L; Houssami, Nehmat; Lee, Janie M (2017) Imaging Surveillance After Primary Breast Cancer Treatment. AJR Am J Roentgenol 208:676-686
Menes, Tehillah S; Kerlikowske, Karla; Lange, Jane et al. (2017) Subsequent Breast Cancer Risk Following Diagnosis of Atypical Ductal Hyperplasia on Needle Biopsy. JAMA Oncol 3:36-41
Dabbous, Firas M; Dolecek, Therese A; Berbaum, Michael L et al. (2017) Impact of a False-Positive Screening Mammogram on Subsequent Screening Behavior and Stage at Breast Cancer Diagnosis. Cancer Epidemiol Biomarkers Prev 26:397-403
Engmann, Natalie J; Scott, Christopher G; Jensen, Matthew R et al. (2017) Longitudinal Changes in Volumetric Breast Density with Tamoxifen and Aromatase Inhibitors. Cancer Epidemiol Biomarkers Prev 26:930-937
Dabbous, Firas; Dolecek, Therese A; Friedewald, Sarah M et al. (2017) Performance characteristics of digital vs film screen mammography in community practice. Breast J :
Ziv, Elad; Tice, Jeffrey A; Sprague, Brian et al. (2017) Using Breast Cancer Risk Associated Polymorphisms to Identify Women for Breast Cancer Chemoprevention. PLoS One 12:e0168601
Ahern, Thomas P; Sprague, Brian L; Bissell, Michael C S et al. (2017) Family History of Breast Cancer, Breast Density, and Breast Cancer Risk in a U.S. Breast Cancer Screening Population. Cancer Epidemiol Biomarkers Prev 26:938-944

Showing the most recent 10 out of 164 publications